

Convertisseur de mesure multifonctionnel programmable avec des temps de réponse très rapides

pour tensions et courants continus, capteurs de température, transmetteurs à résistance ou potentiomètres

Spécifications fonctionnelles

Le SINEAX VQ604s est un convertisseur de mesure multifonctionnel pour montage sur rail DIN et doté des caractéristiques suivantes:

- Mesure de la tension CC, du courant CC, de la température (RTD, TC) et de la résistance
- Temps de réponse jusqu'à 10 ms
- Raccordement de capteur sans ponts externes
- 2 entrées (pour redondance de capteurs ou calcul différentiel, par ex.)
- 2 sorties (I)
- 2 entrées peuvent être interconnectées et assignées aux 2 sorties, ce qui permet des calculs et la surveillance des capteurs (maintenance préventive des capteurs ex.).
- Compatibilité système: communication par interface Modbus
- Relais librement programmable pour signalisation de seuils ou d'alarmes par ex.
- Bloc d'alimentation à plage large CA/CC
- Bornes à vis ou à ressort enfichables de qualité

Il est possible d'adapter à l'application tous les paramétrages de l'appareil à l'aide d'un logiciel pour PC. Ce logiciel sert également à la visualisation, la mise en service et l'entretien.

Tableau 1: Grandeurs d'entrée, étendues de mesure

Mode de mesure	Étendue de mesure	Plage minimale
Tension CC [mV]	−1000 1000 mV	2 mV
Courant CC [mA]	−50 50 mA	0,2 mA
Résistance $[\Omega]$	05000 Ω	8 Ω
RTD Pt100	−200 850 °C	20 K
RTD Ni100	−60 250 °C	15 K
TC type B	0 1820 °C	635 K
TC type E	−270 1000 °C	34 K
TC type J	−210 1200 °C	39 K
TC type K	-270 1372 °C	50 K

Mode de mesure	Étendue de mesure	Plage minimale		
TC type L	-200 900 °C	38 K		
TC type N	-270 1300 °C	74 K		
TC type R	-50 1768 °C	259 K		
TC type S	-50 1768 °C	265 K		
TC type T	-270 400 °C	50 K		
TC type U	−200 600 °C	49 K		
TC types W5Re-W26Re	0 2315 °C	135 K		
TC types W3Re-W25Re	0 2315 °C	161 K		

Convertisseur de mesure multifonctionnel programmable avec des temps de réponse très rapides

Caractéristiques techniques

Entrée de mesure 1 -

Tension continue

Étendue de mesure mV voir tableau 1 pour les limites

 $Ri > 10 M\Omega$, surcharge admissible max. $\pm 1200 \text{ mV}$

Courant continu

Étendue de mesure mA voir tableau 1 pour les limites

 $Ri = 11 \Omega$, surcharge admissible

max. ±50 mA

Thermomètre à résistance RTD

Types de résistance Pt100 (CEI 60751),

réglable entre Pt20...Pt1000

Ni100 (DIN 43760),

réglable entre Ni50...Ni1000

Limites de l'étendue

de mesure voir tableau 1
Circuit à 2, 3 ou 4 fils
Courant de mesure 0,2 mA

Résistance de ligne 30Ω par ligne,

réglable ou compensable en cas

de raccordement à 2 fils

Thermocouples TC

Paires de thermocouples types B, E, J, K, N, R, S, T

(CEI 60584-1)

types L, U (DIN 43760) types W5Re-W26Re, W3Re-W25Re (ASTM E988-90)

Limites de l'étendue

de mesure

voir tableau 1

Compensation de

soudure froide interne (avec Pt100 incorporée),

avec Pt100 connectée aux bornes

ou

externe par thermostat de référence pour soudure froide

−20...70 °C

Mesure de résistance, transmetteur potentiométrique, potentiomètre

Limites de l'étendue

de mesure voir tableau 1

Circuit raccordement à 2, 3 ou 4 fils

Transmetteur

potentiométrique types WF et WF DIN

Courant de mesure 0,2 mA Résistance de ligne 30 Ω par ligne,

réglable ou compensable en cas

de raccordement à 2 fils

Entrée de mesure 2 -

Courant continu

Étendue de mesure mA comme entrée de mesure 1

(seulement pour

l'exécution correspondante)

Tension continue

Étendue de mesure mV comme entrée de mesure 1

Thermomètre à résistance RTD

Comme entrée de mesure 1 sauf

Circuit raccordement à 2 ou 3 fils

Thermocouples TC

Comme entrée de mesure 1

Mesure de résistance, transmetteur potentiométrique, potentiomètre

Comme entrée de mesure 1 sauf

Circuit raccordement à 2 ou 3 fils

Remarques

Les entrées de mesure 1 et 2 sont galvaniquement liées. Si deux capteurs ou grandeurs d'entrée sont utilisées, observer les possibilités de combinaisons présentées dans le tableau 3 ainsi que les remarques sur les circuits dans le mode d'em-

Sorties analogiques 1 et 2 →

Ces deux sorties sont galvaniquement liées et possèdent une

masse commune.

Courant continu

Gamme de sortie ± 20 mA,

gamme configurable au choix

Tension de charge 12 V max. Tension à vide < 20 V

Limitation configurable, ±22 mA max.

Ondulation résiduelle <0,2 mA pp

(après filtre passe-bas 10 kHz)

Paramétrage des sorties

Limitation

Ajustage gain / offset

Inversion

Sortie de contact relais □□-

Contact 1 pôle, contact NO

Puissance de commutation CA: 2 A / 250 V, CC: 2 A / 30 V

Entrée de bus / programmation 🔸

Interface, protocole RS-485, Modbus RTU
Vitesse de communication 9,6...115,2 kbauds, réglable

Comportement de transfert

Grandeurs de mesure

pour les sorties

• entrée 1

• entrée 2

• entrée 1 + entrée 2

• entrée 1 – entrée 2

entrée 2 – entrée 1

• entrée 1 x entrée 2

 valeur min., valeur max. ou moyenne de l'entrée 1

et entrée 2

 redondance de capteurs entrée 1 ou entrée 2

Convertisseur de mesure multifonctionnel programmable avec des temps de réponse très rapides

Fonctions

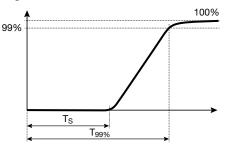
Fonctions de transfert linéaire, valeur absolue,

échelle (gain/offset), fonction de

loupe (zoom)

spécifique à l'utilisateur à l'aide du tableau des points d'interflexion (24 points d'interflexion par gran-

deur de mesure)


Temps de réponse réglable de 0,01 à 30 s, selon

la configuration d'appareil (voir Comportement temporel / Temps

de réponse)

Comportement temporel/Temps de réponse

Le temps de réponse (t99%) est défini par le paramètre correspondant et s'applique aux deux entrées à la fois. Plus ce temps est long, mieux les variations de mesure seront filtrées.

Le temps de réponse minimum dépend des paramètres suivants:

- Nombre d'entrées
- Mesure
- La fréquence du réseau sélectionnés (rejet hum secteur)
- Le contrôle d'erreur du capteur (rupture, court-circuit)

Le tableau suivant indique les temps de réponse minimum avec une entrée active:

Type de mesure	Surveillance d'erreurs	Temps de réponse [ms]
Mesure de tension [mV]	_	10
Mesure de tension [V]	_	10
Thermocouple à compensation interne	Rupture	97
Mesure de résistance 2 fils	Rupture Court-circuit	23
Mesure de résistance 3 fils, WF, WFDIN	Rupture Court-circuit	110
Mesure de résistance 4 fils	Rupture Court-circuit	106

Le logiciel de configuration CB-Manager (téléchargement gratuit à www.camillebauer.com) permet de calculer le temps de réponse minimum pour chaque configuration possible ainsi que la fréquence.

Seuils et surveillances

Nombre de seuils

Grandeurs de mesure des seuils

2

- entrée 1
- entrée 2
- grandeur de mesure des sorties
- entrée 1 entrée 2

(surveillance de dérive avec 2 capteurs par ex.)

 entrée 2 – entrée 1 (surveillance de dérive avec 2 capteurs par ex.)

compteur 1
 valeur absolue

gradient dx/dt (surveillance du gradient de température par ex.)

Temporisation réglable entre 0...3600 s

Signalisation contact relais, LED alarme, état 1

Surveillance de rupture de capteur et de court-circuit, entrée de mesure

Signalisation contact relais, LED alarme, état 1

valeur de sortie en cas d'erreur

Signalisation sur LED alarme En cas d'erreur de capteur,

l'entrée défaillante (1 ou 2) est signalée par le nombre de clignotements de la LED alarme (1x ou

En cas d'erreur sur les deux entrées: LED alarme sans cligno-

tement.

Autres surveillancesSurveillance de la dérive

surveillance de la valeur mesurée différentielle entre 2 capteurs d'entrée sur une période déterminée (en raison de temps de réponse différents des capteurs

par ex.)

Une alarme est signalée en cas de franchissement du seuil pendant

cette période. (voir Seuils 1 et 2)

Redondance de capteurs

mesure de 2 capteurs de température ; commutation sur le capteur 2 pour pallier, en cas de défaut, la défaillance du capteur 1 (voir Grandeurs de mesure des sorties)

Signalisations d'alarme

Contact relais si le contact est fermé,

la LED jaune est allumée, fonction d'alarme inversible

LED d'alarme Temporisation

réglable entre 0...60 s

Valeur de sortie en cas de défaut

pour rupture de capteur et court-circuit, valeur réglable entre -10...110 %

Énergie auxiliaire

Tension nominale UN	Tolérance
24230 V CC	± 15 %
100230 V CA, 45400 Hz	± 15 %

Consommation >3 W ou 7 VA

Convertisseur de mesure multifonctionnel programmable avec des temps de réponse très rapides

Organes d'affichage sur l'appareil

LED	Couleur	Fonction
ON	verte	mise sous tension
	verte, clignote	communication active
ERR	rouge	alarme
- -	jaune	relais activé

Configuration, programmation

Commande par logiciel «CB-Manager»(gestionnaire CB) pour PC

Précision (selon EN/CEI 60770-1)

Conditions de référence

Température ambiante 23 °C \pm 2 K Énergie auxiliaire 24 V CC Valeur de référence plage de mesure

Paramétrages entrée 1: tension continue mV,

0...1000 mV

sortie 1: 4...20 mA, résistance de

charge 300 Ω

fréquence réseau 50 Hz, temps de réponse 50 ms entrée 2, sortie 2, relais, surveillances coupées ou non actives

Position de montage verticale, autonome

Précision de base

Sous conditions de référence ±0,2 % Autres modes de mesure et plages d'entrée: RTD Pt100. Ni100 $\pm 0.2 \% \pm 0.3 K$ Mesure de résistance $\pm 0.2 \% \pm 0.1 \Omega$

TC types K, E, J, T, N, L, U ±0,2 % ±0,4 K, valeur de mesure

> -100 °C

TC types R, S $\pm 0.2 \% \pm 2.4 K$

±0,2 % ±2,4 K, valeur de mesure TC type B

> 300°C

TC W5Re-W26Re,

W3Re-W25Re $\pm 0.2 \% \pm 2.0 K$ Tension continue mV ±0,2 % ±0,015 mV Courant continu mA ±0,2 % ±0,0015 mA

Erreurs additionnelles (additives)

Grande valeur de début d'étendue

(valeur de début > 40 %

±0,2% de la valeur finale) de la valeur finale): Petite gamme de sortie ±0,2 % × (gamme référentielle /

nouvelle gamme)

Compensation de

soudure froide interne typiquement ±3 à 5 K

± facteur de zoom × (précision de Fonction de loupe

> base + erreur additionnelle) Facteur de zoom = gamme des

grandeurs de mesure / gamme de zoom

pour les modes de mesure Fréquence réseau > 50 Hz

Résistance et RTD: ± 0,05 %

Variations dues aux grandeurs d'influence

Température ambiante ±0.2 % tous les 10 K sous condi-

±0.1 %

tions référentielles autres paramétrages:

précision de base et erreurs addi-

tionnelles tous les 10 K

Dérive à longue durée Tension mode commun

ou opposé ±0,2 %

Conditions ambiantes

Température de service -25 ... +55 °C -40 à +70 °C Température de stockage

Humidité relative de l'air ≤75 %, sans condensation Domaine d'utilisation dans locaux jusqu'à 2 000 m

d'altitude

Présentation, montage, raccordement

Construction boîtier sur rail DIN U4,

classe d'inflammabilité V-0 selon

UL94

Dimensions voir Croquis d'encombrements

Montage à encliqueter sur rail DIN

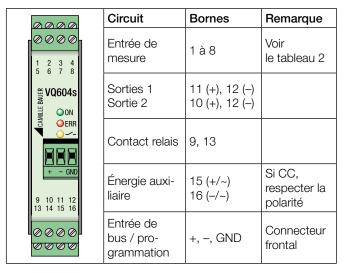
(35 x 15 mm ou

35 x 7,5 mm) selon EN 50022

Bornes enfichables, 2,5 mm²

bloc de jonction à ressort de

connecteur frontal 1,5 mm²


Poids 0,14 kg

Sécurité du produit, réglementations

Compatibilité électromagnétique	EN 61000-6-2 / 61000-6-4
Protection (selon CEI 529 ou EN 60529)	Boîtier IP 40 Bornes de raccordement IP20
Exécution électrique	Selon CEI ou EN 61010
Degré d'encrassement	2
Entre l'énergie auxiliaire et tous les circuits et entre l'entrée de mesure (1 + 2) et tous les circuits	Isolation renforcée Catégorie de surtension III Tension de travail 300 V Tension d'essai 3,7 kV CA rms
Entre la sortie (1 + 2) et le contact relais	Isolation renforcée Catégorie de surtension II Tension de travail 285 V Tension d'essai 2,3 kV CA rms
Entre la sortie (1 + 2) et l'entrée bus	Isolation fonctionnelle Tension de travail < 50 V Tension d'essai 0,5 kV CA rms
Contrôles environnementaux	EN 60068-2-1/-2/-3 EN 60068-2-27 choc : 50 g, 11 ms, dent de scie, demi-sinusoï- dale EN 60068-2-6 vibration : 0,15 mm/2g, 10150 Hz, 10 cycles

Convertisseur de mesure multifonctionnel programmable avec des temps de réponse très rapides

Raccordements électriques

Tableau 2 : Raccordement des entrées

Remarque: Si deux capteurs ou grandeurs d'entrée sont utilisées, observer les possibilités de combinaisons présentées dans le tableau 3 ainsi que les remarques sur les circuits dans le mode d'emploi!

Mode de mesure	Circuit				
Mode de mesure	Entrée 1	Entr. 2			
Tension continue mV	+ 3 U [mV]	<u>7</u> 0			
	4	8			
Thermocouple avec thermostat de référence pour soudure froide	+ 3	<u>7</u> O			
ou à compensation interne	- 4	8			
Thermocouple avec	Pt100	2			
Pt100 connectée aux bornes à la même entrée	+ 3	<u>7</u> O			
	- 4	8			

Mada da masauma	Circuit						
Mode de mesure	Entrée 1	Entr. 2					
	Pt100	0					
Thermocouple avec Pt100 connectée aux bornes	+ 3	<u>4</u> O					
à l'autre entrée	- 4	8					
Thermomètre à résistance	10	2					
ou mesure de résistance 2 fils	RTD, R	8					
Thermomètre à résistance	10	<u>2</u> O					
ou mesure de résistance 3 fils	RTD, R 3 0	<u>7</u> O					
Thermomètre à résistance	100						
mesure de résistance 4 fils	RTD, R 3 0						
	Ra 0%	2					
Transmetteur potentiométrique WF	Re 3	- 7					
	40	8					
Transmetteur	Ra Ra						
potentiométrique WF- DIN	Rd 0% 3 100%	<u>7</u>					
	40	<u>8</u> O					
Courant continu mA (entrée 2 seulement pour l'exécution corres-	+ 5	<u>6</u> O					
pondante)	40	 0					

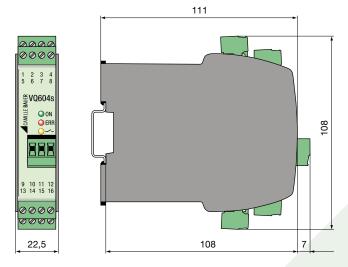
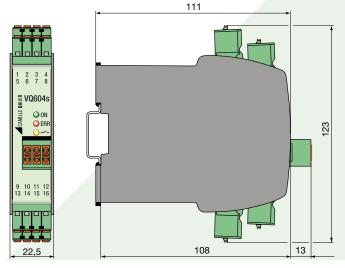

Convertisseur de mesure multifonctionnel programmable avec des temps de réponse très rapides

Tableau 3: Possibilités de combinaisons des modes de mesure


	Entrée 2 Mode de mesure	U [mV]	à la terre	TC ext.	à la terre	TC int.	à la terre		R 2L	R 3L	RTD 2L	вто зг	I [mA]
Entrée 1 Mode de mesure	Bornes	7,	,8	7	',8	7,	,8	2,7,8	2,8	2,7,8	2,8	2,7,8	6,4
U [mV] à la terre	3,4	1	√	V	√	1	√	1	1	1	1	1	J
I [mA]	5,4	1		V		1		1	1	1	1	1	√
TC ext. à la terre	3,4	1	√	1	√	1	√	~	1	1	1	~	1
TC int.	3,4	1		J		V		1	1	1	1	1	1
à la terre							$\sqrt{}$						
	1,3,4	1		V				1	1	J	1	1	
R 2L	1,4	1		V				1	1	1	1	1	
R 3L	1,3,4	1		1					1	1	1	\	
R 4L	1,2,3,4	1		V									
RTD 2L	1,4	1		1				✓	1	1	1	\	
RTD 3L	1,3,4	1		J				1	1	J	1	1	
WF	1,3,4	1		√				1	1	1	1	1	
WF_DIN	1,3,4	1		1				1	1	J	1	1	
RTD 4L	1,2,3,4	1		V									

Croquis d'encombrements

Avec bornes à vis

Équipement fourni

- 1 SINEAX VQ604s
- 1 Consignes de sécurité 168 501
- 1 CD logiciel et documentation 156 027

Accessoires

Convertisseur USB-RS485 (pour programmation du VB604s) numéro d'article 163 189

Références de commande

VQ604s, programmable					
Caractéristiques, variantes					
1.	Construction				
	Boîtier pour montage sur rail DIN	1			
2.	Exécution				
	Standard avec bornes à vis	1			
	Standard avec bornes à ressort				
3.	3. Contraintes climatiques				
	Résistance climatique standard	1			
4.	Procès-verbal d'essai				
	sans procès-verbal d'essai	0			
	avec procès-verbal d'essai en allemand				
	avec protocole d'essai en anglais	Е			
5.	Configuration				
	Configuration de base	G			

Configuration de base selon les variantes

Exécution	Configuration de base			
standard	Entrées 1 et 2: 420 mA			
	Sorties 1 et 2: 420 mA			

Rely on us.

Camille Bauer Metrawatt AG Aargauerstrasse 7 CH-5610 Wohlen / Suisse

Téléphone: +41 56 618 21 11 Télécopie: +41 56 618 21 21

info@camillebauer.com www.camillebauer.com