

Convertisseur de mesure multifonctionnel programmable

pour tensions et courants continus, capteurs de température, transmetteurs à résistance ou potentiomètres

CE

Spécifications fonctionnelles

Le SINEAX V604s est un convertisseur de mesure multifonctionnel pour montage sur rail DIN et doté des caractéristiques suivantes:

- Mesure de la tension CC, du courant CC, de la température (RTD, TC) et de la résistance
- Raccordement de capteur sans ponts externes
- 2 entrées (pour redondance de capteurs ou calcul différentiel, par ex.)
- 2 sorties (U et/ou I)
- Fonction compteur d'énergie CC (avec sortie S0)
- 2 entrées peuvent être interconnectées et assignées aux 2 sorties, ce qui permet des calculs et la surveillance des capteurs (maintenance préventive des capteurs ex.)
- Compatibilité système : communication par interface Modbus
- Relais librement programmable pour signalisation de seuils ou d'alarmes par ex.
- Sortie numérique (en option)
- Bloc d'alimentation à plage large CA/CC
- Bornes à vis ou à ressort enfichables de qualité

Il est possible d'adapter à l'application tous les paramétrages de l'appareil à l'aide d'un logiciel pour PC. Ce logiciel sert également à la visualisation, la mise en service et l'entretien.

Tableau 1: Grandeurs d'entrée, étendues de mesure

Mode de mesure	Étendue de mesure	Plage minimale
Tension CC [mV]	−1000 1000 mV	2 mV
Tension CC [V]	-600 600 V ¹⁾	≥1 V
Courant CC [mA]	−50 50 mA	0,2 mA
Résistance [Ω]	05000 Ω	8 Ω
RTD Pt100	−200 850 °C	20 K
RTD Ni100	−60 250 °C	15 K

Dans les versions d'appareil plus anciennes, l'étendue de mesure ou la surcharge admissible est seulement de -300...300 V. Avant d'utiliser l'appareil, veuillez vérifier sa version à l'aide de la plaque signalétique ou du logiciel CB-Manager.

1			Q	Terror	φ	ð	Þ	Mat 169			1 2 3 4 5 6 7 8
	RS48	OUT OUT	OUTPUT	80	INPUT 1: 4 20mA	24		17	Unive	Si	
NO SEOVACIZA SOVDCIZA	RS485 Modbus	4 20mA			20mA	230VDC/	3	9/004	Universal signal converter	Sineax V604s	CAMILLE BAUER NO ERR
OVDC/2A						24 230VDC / 100 230VAC, 45-400Hz, 5VA			amformer converter	1604s	WS ● ERR
					INPUT 2: 4	AC, 45-400H					
ı					420mA	z SVA			Man	Camill	
									Man: 11/10	Camille Bauer AG Switzerland	9 10 11 12 13 14 15 16

Mode de mesure	Étendue de mesure	Plage minimale
TC type B	0 1820 °C	635 K
TC type E	−270 1000 °C	34 K
TC type J	−210 1200 °C	39 K
TC type K	-270 1372 °C	50 K
TC type L	-200 900 °C	38 K
TC type N	-270 1300 °C	74 K
TC type R	-50 1768 °C	259 K
TC type S	-50 1768 °C	265 K
TC type T	-270 400 °C	50 K
TC type U	−200 600 °C	49 K
TC types W5Re-W26Re	0 2315 °C	135 K
TC types W3Re-W25Re	0 2315 °C	161 K

Convertisseur de mesure multifonctionnel programmable

Caractéristiques techniques

Entrée de mesure 1 -

Tension continue

Étendue de mesure mV voir tableau 1 pour les limites

 $Ri > 10 M\Omega$,

surcharge admissible max. ±1200 mV

Étendue de mesure V

voir tableau 1 pour les limites

(seulement pour

 $Ri = 3 M\Omega$, surcharge admissible

l'exécution correspondante) surcharge

max. $\pm 600 \text{ V}^{\text{ 1)}}$

Courant continu

Étendue de mesure mA voir tableau 1 pour les limites

 $Ri = 11 \Omega$,

surcharge admissible max. ±50

mΑ

Thermomètre à résistance RTD

Types de résistance Pt100 (CEI 60751),

réglable entre Pt20...Pt1000

Ni100 (DIN 43760),

réglable entre Ni50...Ni1000

Limites de l'étendue

de mesure voir tableau 1
Circuit à 2, 3 ou 4 fils
Courant de mesure 0,2 mA

Résistance de ligne 30Ω par ligne,

réglable ou compensable en cas

de raccordement à 2 fils

Thermocouples TC

Paires de thermocouples types B, E, J, K, N, R, S, T

(CEI 60584-1)

types L, U (DIN 43760) types W5Re-W26Re, W3Re-W25Re (ASTM E988-90)

Limites de l'étendue

de mesure voir tableau 1

Compensation de

soudure froide interne (avec Pt100 incorporée),

avec Pt100 connectée aux bornes

ou

externe par thermostat de référence pour soudure froide

−20...70 °C

Mesure de résistance, transmetteur potentiométrique, potentiomètre

Limites de l'étendue

de mesure voir tableau 1

Circuit raccordement à 2, 3 ou 4 fils

Transmetteur

potentiométrique types WF et WF DIN

Courant de mesure 0,2 mA Résistance de ligne 30 Ω par ligne,

réglable ou compensable en cas

de raccordement à 2 fils

Entrée de mesure 2 -

Courant continu

Étendue de mesure mA

(seulement pour

l'exécution correspondante)

Tension continue

Étendue de mesure mV comme entrée de mesure 1

comme entrée de mesure 1

Thermomètre à résistance RTD

Comme entrée de mesure 1 sauf

Circuit raccordement à 2 ou 3 fils

Thermocouples TC

Comme entrée de mesure 1

Mesure de résistance, transmetteur potentiométrique, potentiomètre

Comme entrée de mesure 1 sauf

Circuit raccordement à 2 ou 3 fils

Remarques

Les exécutions suivantes de l'appareil sont disponibles :

a) V604s avec entrée de mesure pour 1x courant continu [mA] et 1x tension continue élevée [V]

Il est possible ici d'affecter les modes de mesure
Tension continue [V] et Courant continu [mA] à l'entrée
1 ou 2 lors de la configuration de l'appareil.

b) V604s avec entrée de mesure pour 2x courant

continu [mA]

Les différentes exécutions sont fixes, leur programmation ne peut être changée!

Les entrées de mesure 1 et 2 sont galvaniquement liées. Si deux capteurs ou grandeurs d'entrée sont utilisées, observer les possibilités de combinaisons présentées dans le tableau 3 ainsi que les remarques sur les circuits dans le mode d'em-

l iolq

Sorties analogiques 1 et 2 →

Ces deux sorties sont galvaniquement liées et possèdent une masse commune. Sortie de tension ou de courant configurables par logiciel.

Courant continu

Gamme de sortie \pm 20 mA,

gamme configurable au choix

Tension de charge 12 V max. Tension à vide < 20 V

Limitation configurable, ±22 mA max.

Ondulation résiduelle <1 % pp réf. 20 mA

Tension continue

Gamme de sortie \pm 10 V,

gamme configurable au choix

Charge 20 mA max. Limitation de courant 30 mA env.

 $\mbox{Limitation} \qquad \qquad \mbox{configurable, ± 11 V max.}$

Ondulation résiduelle <1 % pp réf. 10 V

Convertisseur de mesure multifonctionnel programmable

Paramétrage des sorties

Limitation

Ajustage gain / offset

Inversion

Sortie de contact relais $\square \exists$

Variante relais:

Contact 1 pôle, contact NO

Puissance de commutation CA: 2 A / 250 V, CC: 2 A / 30 V

Variante sortie numérique :

Contact transistor, contact NO Puissance de commutation 27 V CC/27 mA max.

Entrée de bus / programmation

Interface, protocole RS-485, Modbus RTU Vitesse de communication 9,6...115,2 kbauds, réglable

Comportement de transfert

Grandeurs de mesure pour les sorties

- entrée 1
- entrée 2
- entrée 1 + entrée 2
- entrée 1 entrée 2
- entrée 2 entrée 1
- entrée 1 x entrée 2
- valeur min., valeur max.
 ou moyenne de l'entrée 1

et entrée 2

 redondance de capteurs entrée 1 ou entrée 2

Fonctions de transfert linéaire, valeur absolue,

échelle (gain/offset), fonction de

loupe (zoom)

spécifique à l'utilisateur à l'aide du tableau des points d'interflexion (24 points d'interflexion par gran-

deur de mesure)

Temps de réponse réglable entre 1...30 s

Seuils et surveillances

Nombre de seuils

Grandeurs de mesure des seuils

seuils • entrée 1

• entrée 2

• grandeur de mesure des sorties

 entrée 1 – entrée 2 (surveillance de dérive avec 2 capteurs par ex.)

 entrée 2 – entrée 1 (surveillance de dérive avec 2 capteurs par ex.)

• compteur 1

Fonctions valeur absolue

gradient dx/dt (surveillance du gradient de température par ex.)

Temporisation réglable entre 0...3600 s
Signalisation contact relais ou sortie
numérique, LED alarme, état 1

Compteurs et sortie d'impulsion

Compteur 1:

Nombre 1

Source compteur grandeurs de mesure des sorties

1 ou 2

Paramétrages mode (pos., nég.),

unité (préfixe, s/min/h),

remise à 0/réglage du compteur

Sortie d'impulsion 1 (variante sortie numérique):

Norme: interface S0 conforme à CEI/EN

62053-31

Paramétrages durée d'impulsion (30...250 ms),

fréquence d'impulsion

Signalisation sortie numérique

Surveillance de rupture de capteur et de court-circuit, entrée de mesure

Signalisation contact relais ou sortie

numérique, LED alarme, état 1 valeur de sortie en cas d'erreur

Signalisation sur LED alarme En cas d'erreur de capteur,

l'entrée défaillante (1 ou 2) est signalée par le nombre de clignotements de la LED alarme (1x ou

2x).

En cas d'erreur sur les deux entrées: LED alarme sans cligno-

tement.

Autres surveillances

Surveillance de la dérive surveillance de la valeur

mesurée différentielle entre 2 capteurs d'entrée sur une période déterminée (en raison de temps de réponse différents des capteurs

par ex.)

Une alarme est signalée en cas de franchissement du seuil pendant

cette période. (voir Seuils 1 et 2)

Redondance de capteurs mesure de 2 capteurs de tempé-

rature; commutation sur le capteur 2 pour pallier, en cas de défaut, la

défaillance du capteur 1 (voir Grandeurs de mesure des

sorties)

Signalisations d'alarme

Contact relais ou

sortie numérique si le contact est fermé,

la LED jaune est allumée, fonction d'alarme inversible

LED d'alarme

Temporisation réglable entre 0...60 s

Valeur de sortie en

cas de défaut pour rupture de capteur et

court-circuit, valeur réglable

entre -10...110 %

Convertisseur de mesure multifonctionnel programmable

Énergie auxiliaire

Tension nominale UN	Tolérance
24230 V CC	± 15 %
100230 V CA, 45400 Hz	± 15 %

Consommation >3 W ou 7 VA

Organes d'affichage sur l'appareil

LED	Couleur	Fonction
ON	verte	mise sous tension
	verte, clignote	communication active
ERR	rouge	alarme
/ _	jaune	relais activé

Configuration, programmation

Commande par logiciel «CB-Manager» (gestionnaire CB) pour PC

Précision (selon EN/CEI 60770-1)

Conditions de référence

Température ambiante $23 \, ^{\circ}\text{C} \pm 2 \, \text{K}$ Énergie auxiliaire $24 \, ^{\circ}\text{C}$ Valeur de référence plage de mesure

Paramétrages entrée 1 : tension continue mV,

0...1000 mV

sortie 1: 4...20 mA, résistance de

charge 300 $\boldsymbol{\Omega}$

fréquence réseau 50 Hz, temps de réponse 1 s

entrée 2, sortie 2, relais, surveillances coupées ou non actives, pour sortie de tension :

0...10 V, résistance de

charge 2 k Ω

Position de montage verticale, autonome

Précision de base

Sous conditions de référence±0,1 %

Autres modes de mesure et plages d'entrée:

RTD Pt100, Ni100 $\pm 0,1 \% \pm 0,2 \text{ K}$ Mesure de résistance $\pm 0,1 \% \pm 0,1 \Omega$

TC types K, E, J, T, N, L, U ± 0.1 % ± 0.4 K, valeur de mesure

> -100 °C

TC types R, S $\pm 0.1 \% \pm 2.4 \text{ K}$

TC type B $\pm 0,1$ % $\pm 2,4$ K, valeur de mesure

> 300°C

TC W5Re-W26Re,

W3Re-W25Re \pm 0,1 % \pm 2,0 K Tension continue mV \pm 0,1 % \pm 0,015 mV

Tension continue V $U \le 300 \text{ V} \pm 0.1 \% \pm 0.0045 \text{ V}$

U > 300 V + /-0,15 % + 0,0045 V

Courant continu mA ±0,1 % ±0,0015 mA

Erreurs additionnelles (additives)

Grande valeur de début d'étendue

(valeur de début > 40 %

de la valeur finale): $\pm 0,1\%$ de la valeur finale)

Petite gamme de sortie $\pm 0,1\% \times (gamme référentielle / finale)$

nouvelle gamme)

Compensation de

soudure froide interne ±3 K

Fonction de loupe \pm facteur de zoom \times (précision de

base + erreur additionnelle)
Facteur de zoom = gamme des

grandeurs de mesure / gamme de zoom

Variations dues aux grandeurs d'influence

Température ambiante $\pm 0,1$ % tous les 10 K sous condi-

±0.1 %

tions référentielles autres paramétrages:

précision de base et erreurs addi-

tionnelles tous les 10 K

Dérive à longue durée

Tension mode commun

ou opposé ±0,2 %

Conditions ambiantes

Température de service $-25 \dots +55$ °C Température de stockage -40 à +70 °C

Humidité relative de l'air ≤75 %, sans condensation Domaine d'utilisation dans locaux jusqu'à 2 000 m

d'altitude

Présentation, montage, raccordement

Construction boîtier sur rail DIN U4,

classe d'inflammabilité V-0 selon

UL94

Dimensions voir Croquis d'encombrements

Montage à encliqueter sur rail DIN

(35 x 15 mm ou

35 x 7,5 mm) selon EN 50022

Bornes enfichables, 2,5 mm²

bloc de jonction à ressort de

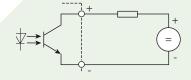
connecteur frontal

1,5 mm²

Poids 0,14 kg

Sécurité du produit, réglementations

Compatibilité électromagnétique	EN 61000-6-2 / 61000-6-4
Protection (selon CEI 529 ou EN 60529)	Boîtier IP 40 Bornes de raccordement IP20
Exécution électrique	Selon CEI ou EN 61010
Degré d'encrassement	2


Convertisseur de mesure multifonctionnel programmable

	T
Entre l'énergie auxiliaire et tous les circuits	Isolation renforcée Catégorie de surtension III Tension de travail 300 V Tension d'essai 3,7 kV CA rms
Entre l'entrée de mesure (1 + 2) et tous les autres circuits	Isolation renforcée Catégorie de surtension III Tension de travail 300 V ou Catégorie de surtension II Tension de travail 600 V Tension d'essai 3,7 kV CA rms
Entre la sortie (1 + 2) et le contact relais ou sortie num.	Isolation renforcée Catégorie de surtension II Tension de travail 285 V Tension d'essai 2,3 kV CA rms
Entre la sortie (1 + 2) et l'entrée bus	Isolation fonctionnelle Tension de travail < 50 V Tension d'essai 0,5 kV CA rms
Contrôles environnementaux	EN 60068-2-1/-2/-3 EN 60068-2-27 choc: 50 g, 11 ms, dent de scie, demi-sinusoï- dale EN 60068-2-6 vibration: 0,15 mm/2g, 10150 Hz, 10 cycles

Raccordements électriques

Circuit	Bornes	Remarque
Entrée de mesure	1 à 8	Voir le tableau 2
Sorties 1 Sortie 2	11 (+), 12 (-) 10 (+), 12 (-)	
Contact relais	9 (+), 13 (-)	+, - : polarité pour sortie numérique
Énergie auxi- liaire	15 (+/~) 16 (-/~)	Si CC, respecter la polarité
Entrée de bus / pro- grammation	+, -, GND	Connecteur frontal

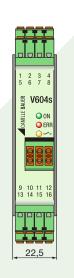
Variante sortie numérique:

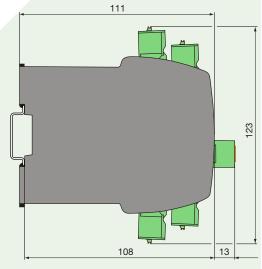
Tableau 2: Raccordement des entrées

Remarque: Si deux capteurs ou grandeurs d'entrée sont utilisées, observer les possibilités de combinaisons présentées dans le tableau 3 ainsi que les remarques sur les circuits dans le mode d'emploi!

M - d - d	Circuit	
Mode de mesure	Entrée 1	Entr. 2
Tension continue mV	+ 3 O	<u>7</u> 0
Thermocouple avec thermostat de référence pour soudure froide ou à compensation interne	+ 30	<u>7</u> 0
Thermocouple avec Pt100 connectée aux bornes à la même entrée	Pt100	² O ⁷ O
Thermocouple avec Pt100 connectée aux bornes à l'autre entrée	Pt100	<u>4</u> 0 <u>7</u> 0
Thermomètre à résistance ou mesure de résistance 2 fils	RTD, R	<u>2</u> 0
Thermomètre à résistance ou mesure de résistance 3 fils	1 O RTD, R 3 O 4 O	<u>2</u> O

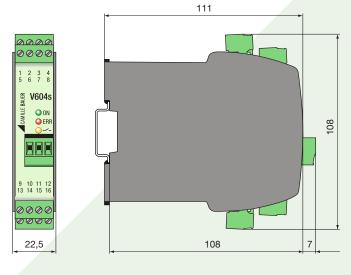
Convertisseur de mesure multifonctionnel programmable


Made de magure	Circuit	
Mode de mesure	Entrée 1	Entr. 2
Thermomètre à résistance ou mesure de résistance 4 fils	100 RTD, R 300	
Transmetteur potentiométrique WF	Ra 0% Rd 100% Re 2	<u>2</u>
poternomenque vvi	30	8
Transmetteur potentiométrique WF-	Ra 0% 3 0	<u>2</u> 0
DIN	100% Re 4	8
Tension continue V (seulement pour l'exécu-	+ 6 O	
tion correspondante)	<u> </u>	
Courant continu mA (entrée 2 seulement pour l'exécution corres-	+ 5 O	6
pondante)	4	


Tableau 3: Possibilités de combinaisons des modes de mesure

	Entrée 2 Mode de mesure	U [mV]	à la terre	U [V] 1	I [mA] 1	TC ext.	à la terre	TC int.	à la terre		R 2L	R 3L	RTD 2L	RTD 3L	I [mA] 2
Entrée 1 Mode de mesure	Bornes	7,	,8	6,4	5,4	7	,8	7,	,8	2,7,8	2,8	2,7,8	2,8	2,7,8	6,4
U [mV] à la terre	3,4	J	√	1	√	1	√	>	√	1	√	1	√	→	1
U [V] 1	6,4	1			1	1		1		1	1	1	1	1	
I [mA]	5,4	1		√		√		√		1	√	√	1	√	√
TC ext.	3,4	1		1	√	1		1		√	1	√	1	√	√
à la terre			$\sqrt{}$				$\sqrt{}$								
TC int.	3,4	1		1	1	1		1		√	1	√	1	√	√
à la terre			$\sqrt{}$				$\sqrt{}$								
	1,3,4	1				1				J	1	1	1	1	
R 2L	1,4	1				1				J	1	√	1	1	
R 3L	1,3,4	1				1				J	1	1	1	1	
R 4L	1,2,3,4	1				1									
RTD 2L	1,4	V				1				J	1	J	\checkmark	1	
RTD 3L	1,3,4	1				1				√	V	V	1	√	
WF	1,3,4	1				1				√	1	1	1	1	
WF_DIN	1,3,4	1				1				1	1	1	1	√	
RTD 4L	1,2,3,4	1				1									

- 1 seulement sélectionnable avec l'exécution 1x courant continu [mA] et 1x tension continue élevée [V]
- 2 seulement sélectionnable avec l'exécution 2x courant continu [mA]


Avec bornes à ressort

Croquis d'encombrements

Avec bornes à vis

Équipement fourni

- 1 SINEAX V604s
- 1 Consignes de sécurité 168 501
- 1 CD logiciel et documentation 156 027

Accessoires

Convertisseur USB-RS485 (pour programmation du V604s) numéro d'article 163 189

SINEAX V604s Convertisseur de mesure multifonctionnel programmable

Code de commande

SINEAX V604s, transmetteur universel programmable

•	•	Boîtier sur profilé chapeau	Forme de construction
•	•	1 standard avec bornes à vis	Version
•	•	RS485 (RTU)	Connexion au bus
•	•	Modbus	Protocole standard
•	•	Résistance climatique standard	Contraintes climatiques
•	•	Protocole d'essai en anglais	Protocole de contrôle
•	•	Configuration standard, librement configurable	Programmation
•	•	2017 / 60112	Fréquence du réseau- répression
•	•	Entrée [mV] à 1000 mV	
-	•	Entrée [V] jusqu'à 600 VDC	Entrée 1
•	-	Entrée [mA]	
•	•	Sans	Type de capteur Entrée 1
-	•	Sans	
•	-	Entrée [mA]	
•	•	Sans	Type de capteur Entrée 2
•	•	Courant [mA]	Sortie de mesure 1
-	•	Non utilisé	C Canada P Cita
•	-	Courant [mA]	Sortie de mesure z
•	•	Relais, à fermeture ; 2A/250VAC;2A/30VDC	Sortie de relais
193329	193321	Numéro d'article	

• Variante active / - Variante inactive

Camille Bauer Metrawatt AG Aargauerstrasse 7 CH-5610 Wohlen / Suisse

Téléphone: +41 56 618 21 11 info@camillebauer.com www.camillebauer.com