

SINEAX G536 Messumformer für Phasenwinkel oder Leistungsfaktor

Tragschienen-Gehäuse P13/70

Verwendung

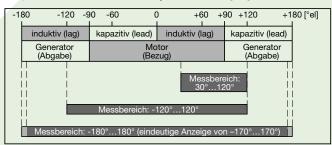
Der Umformer **SINEAX G536** (Bild 1) misst den Phasenwinkel oder Leistungsfaktor zwischen Strom und Spannung eines Einphasennetzes oder eines symmetrisch belasteten Dreiphasennetzes.

Als Ausgangssignal steht ein **eingeprägtes** Gleichstrom- oder **aufgeprägtes** Gleichspannungssignal zur Verfügung, das sich proportional zum Phasenwinkel bzw. Leistungsfaktor zwischen den Messgrössen Strom und Spannung verhält.

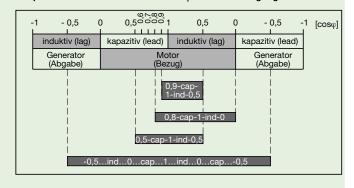
Der Messumformer erfüllt die wichtigen Anforderungen und Vorschriften hinsichtlich Elektromagnetischer Verträglichkeit **EMV** und **Sicherheit** (IEC 1010 bzw. EN 61 010). Er ist nach **Qualitätsnorm** ISO 9001 entwickelt, gefertigt und geprüft.

Bild 1. Messumformer SINEAX G536 im Gehäuse **P13/70** auf Hutschiene aufgeschnappt.

Merkmale / Nutzen


 Messeingang: Sinusförmige, rechteckförmige oder verzerrte Eingangsgrössen mit dominierender Grundwelle

Messgrössen	Eingangs-	Eingangs-	Messbereich-
	Nennstrom	Nennspannung	Grenzen
Phasenwinkel oder Leistungs-faktor	0,5 bis 6 A	10 bis 690 V	Min. Spanne 20 °el Max. Spanne 360 °el


- Messausgang: Unipolare, bipolare oder live-zero Ausgangsgrössen
- Messprinzip: Erfassung des Abstandes der Nulldurchgänge
- AC/DC-Hilfsenergie durch Allstrom-Netzteil / Universell
- Standard als Maritime Ausführung (vormals GL, Germanischer Lloyd)

Messeingang -

Beispiele von Messbereichen mit φ-linearem Ausgang

Beispiele von Messbereichen mit cosφ-linearem Ausgang

Technische Daten

Allgemein

Messgrösse: Phasenwinkel oder Leistungsfaktor

zwischen Strom und Spannung

Messprinzip: Erfassung des Abstandes der Null-

durchgänge

Messumformer für Phasenwinkel oder Leistungsfaktor

Nennfrequenz f_N : 16 ... 400 Hz Eingangsnennspannung U_N : CE: 10 ... 690 V

CSA: 10 ... 600 V

(max. 230 V bei Hilfsenergie ab

Spannungs-Messeingang)

Ansprechempfindlichkeit: 10 ... 120% U_N Eingangsnennstrom I_N : CE: \geq 0,5 bis 6,0 A CSA: \geq 0,5 bis 5,0 A

Ansprechempfindlichkeit: < 1% I_N

Eigenverbrauch: < 0,1 VA Strompfad

U_N · 1,5 mA Spannungspfad

Überlastbarkeit:

Eingangs- grössen I _N .U _N	Anzahl Anwendungen	Dauer einer Anwendung	Zeitraum zwischen zwei aufeinander- folgenden Anwendungen
1,2 x l _N		dauernd	
20 x I _N	10	1 s	100 s
1,2 x U _N ¹		dauernd	
2 x U _N ⁻¹	10	1 s	10 s

¹ Jedoch max. 264 V bei Hilfsenergie ab Spannungs-Messeingang

Messausgang →

Eingeprägter Gleichstrom: 0 ... 1 bis 0 ... 20 mA bzw. live-zero

1 ... 5 bis 4 ... 20 mA ± 1 bis ± 20 mA

Bürdenspannung: + 15 V, resp. – 12 V

Aufgeprägte

Gleichspannung: 0 ... 1 bis 0 ... 10 V bzw. live-zero

0,2 ... 1 bis 2 ... 10 V

± 1 bis ± 10 V

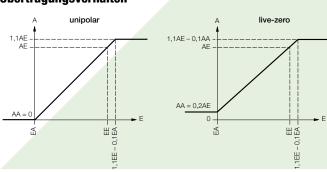
Belastbarkeit: Max. 4 mA

Spannungsbegrenzung bei

 $R_{\text{ext}} = \infty$: $\leq 25 \text{ V}$

Strombegrenzung bei

Spannungsausgang: Ca. 30 mA


Restwelligkeit des

Ausgangsstromes: < 0,5% p.p.

Nennwert der Einstellzeit: 4 Perioden der Nennfrequenz
Andere Bereiche: 2, 8 oder 16 Perioden der Nennfre-

quenz

Übertragungsverhalten

Legende:

E = Eingang

EA = Eingangs-Anfangswert EE = Eingangs-Endwert

A = Ausgang

AA = Ausgangs-Anfangswert

AE = Ausgangs-Endwert

Genauigkeitsangaben (nach EN 60 688)

Bezugswert: Ausgangsspanne

Grundgenauigkeit: Klasse 0,5

Referenzbedingungen

0.1AA - 1.1AF

Zusatzfehler (Maximalwerte):

Spannungseinfluss

zwischen 0,5 und 1,5 U_N ± 0,3%

Stromeinfluss

zwischen 0,4 und 1,5 I_N \pm 0,3% zwischen 0,1 und 1,5 I_N \pm 0,5%

Sicherheit

Schutzklasse: II (schutzisoliert, EN 61 010)

Berührungsschutz: IP 40, Gehäuse

(Prüfdraht, EN 60 529) IP 20, Anschlussklemmen (Prüffinger, EN 60 529)

Verschmutzungsgrad: 2 Überspannungskategorie: III

Nennisolationsspannung (gegen Erde):

gegen Erde): 230 V bzw. 400 V, Eingänge 230 V, Hilfsenergie

40 V, Ausgang

Prüfspannung: 50 Hz, 1 Min. nach EN 61 010-1

3700 bzw. 5550 V, Eingänge gegen alle anderen Kreise sowie Aussen-

fläche

Messumformer für Phasenwinkel oder Leistungsfaktor

Prüfspannung

(Fortsetzung): 3250 V, Eingang U gegen Eingang I

3700 V, Hilfsenergie gegen Ausgang

sowie Aussenfläche

490 V, Ausgang gegen Aussenflä-

che

Hilfsenergie →

Allstrom-Netzteil (DC oder 50/60 Hz)

Tabelle 1: Nennspannungen und Toleranz-Angaben

Nennspannung	Toleranz-Angabe	
85 230 V DC, AC	DC - 15 + 33%	
24 60 V DC, AC	AC ± 15%	

oder

Hilfsenergie ab

Spannungs-Messeingang: 24...60 V AC oder 85...230 V AC

Option: Anschluss auf Niederspannungsseite

an Klemmen 12 und 13 24 V AC oder 24 ... 60 V DC

Leistungsaufnahme: 3 VA

Einbauangaben

Bauform: Gehäuse P13/70

Gehäusematerial: Lexan 940 (Polycarbonat),

Brennbarkeitsklasse V-0 nach UL 94, selbstverlöschend, nicht tropfend,

halogenfrei

Montage: Für Schienenmontage

Gebrauchslage: Beliebig
Gewicht: Ca. 0,24 kg

Anschlussklemmen

Anschlusselement: Schraubklemme mit indirekter Draht-

pressung

Zulässiger Querschnitt

der Anschlussleitungen: ≤ 4,0 mm² eindrähtig oder

2 x 2,5 mm² feindrähtig

Umgebungsbedingungen

Betriebstemperatur: -10 bis + 55 °CLagerungstemperatur: -40 bis + 70 °C

Relative Feuchte: ≤ 75%, keine Betauung

Betriebshöhe: 2000 m max.

Nur in Innenräumen zu verwenden!

Umweltprüfungen

EN 60 068-2-6: Schwingen

Beschleunigung: $\pm 2 g$

Frequenzbereich: 10 ... 150 ... 10 Hz, durchsweepen

mit Durchlaufgeschwindigkeit:

1 Oktave/Minute

Anzahl Zyklen: Je 10, in den 3 senkrecht aufeinan-

derstehenden Ebenen

EN 60 068-2-27: Schocken

Beschleunigung: 3 x50 g je 3 Stösse in 6 Richtun-

gen

EN 60 068-2-1/-2/-3: Kälte, Trockene Wärme, Feuchte

Wärme

IEC 1000-4-2/-3/-4/-5/-6

EN 55 011: Elektromagnetische Verträglichkeit

Maritime Produkteigenschaften (Vormals GL, Germanischer Lloyd)

GL Type approval certificate: No. 12 261-98 HH

Kurzbezeichnung der

Umgebungskategorie: C

Vibrationen: 0,7 g

Tabelle 2: Aufschlüsselung der Varianten

Bezeichnung		*Sperrcode	unmöglich bei Sperrcode	Artikel-Nr./ Merkmal
SIN	NEAX G536 Bestell-Code 536 - xxxx xxxx xx			536 –
Ме	rkmale, Varianten			
1.	Bauform			
	Gehäuse P13/70 für Schienen-Montage			4
2.	Messart			
	Für Phasenwinkel (φ-linear)	А		1
		В		2

Messumformer für Phasenwinkel oder Leistungsfaktor

Bezeichnung			unmöglich bei Sperrcode	Artikel-Nr./ Merkmal
SINEAX G536	xx		536 –	
Merkmale, Varianten				
3. Anwendung				
Einphasen-Wechselstrom				1
U: L1 & L2	Drei- oder Vierleiterdrehstrom gleichbelastet			2
U: L2 & L3	Drei- oder Vierleiterdrehstrom gleichbelastet			3
U: L3 & L1	Drei- oder Vierleiterdrehstrom gleichbelastet	:		4
U: L1 & L3 I: L1	Drei- oder Vierleiterdrehstrom gleichbelastet	-		5
U: L2 & L1	Drei- oder Vierleiterdrehstrom gleichbelastet	-		6
U: L3 & L2	Drei- oder Vierleiterdrehstrom gleichbelastet	-		7
U: L1 & L2	Drei- oder Vierleiterdrehstrom gleichbelastet	-		Α
U: L2 & L3	Drei- oder Vierleiterdrehstrom gleichbelastet	-		В
U: L3 & L1	Drei- oder Vierleiterdrehstrom gleichbelastet			С
4. Eingangs-Nennfrequenz				
50 Hz				1
60 Hz				2
Nichtnorm	[Hz]			
≥ 16 bis 400 Hz				9
Bei Hilfsenergie ab Messeing	gang min. 40 Hz			
5. Eingangs-Nennspannung				
$\frac{U_{N} = 100 \text{ V}}{U_{N} = 200 \text{ V}}$		C		2
$\frac{U_{N} = 230 \text{ V}}{U_{N} = 400 \text{ V}}$		D		3
$\frac{U_N}{N} = 400 \text{ V}$ Nichtnorm	D.A.	D		3
≥ 10 bis 690 V Bei Hilfsenergie ab Messeing siehe Auswahl-Kriterium 9, Z	Zeilen 3 und 4			9
	spannung = verkettete Spannung			
6. Eingangs-Nennstrom				
<u>1 A</u>				1
5 A				2
Nichtnorm ≥ 0,5 bis 6,0 A	[A]			9
7. Messbereich			_	
Phasenwinkel – 60 0 4			В	1
cosφ 0,5 cap 1 ind			А	2
Nichtnorm Messbereich innerhalb – 180 – 1 ind 0 cap 1 . eindeutige Anzeige jedoch n Mess-Spanne ≥ 20 °el				9
8. Ausgangssignal				
0 20 mA				1
4 20 mA				2
Nichtnorm 0 1,00 bis 0 - 1,00 0 1,00 bis - 20 1 5 bis < (4 20) (AA / A	0 20 (symmetrisch)			9
0 10 V				А
Nichtnorm 0 1,00 bis 0 - 1,00 0 1,00 bis - 10 0,2 1 bis 2 10 (AA / AE	0 10 (symmetrisch)			Z
	t, AE = Ausgangs-Endwert			

Messumformer für Phasenwinkel oder Leistungsfaktor

Bezeichnung		*Sperrcode	unmöglich bei Sperrcode	Artikel-Nr./ Merkmal
SINEAX	G536 Bestell-Code 536 - xxxx xxxx xx			536 –
Merkma	ale, Varianten			
9. Hilfs	senergie			
85	. 230 V DC, AC			1
24	. 60 V DC, AC			2
Interr	n ab Messeingang (24 60 V AC)		С	3
Interr	n ab Messeingang (85 230 V AC)		CD	4
Ansc	chluss auf Niederspannungsseite 24 V AC / 24 60 V DC			5
10. Einst	tellzeit			
4 Per	rioden der Eingangsnennfrequenz (Standard)			1
2 Per	rioden der Eingangsnennfrequenz			2
8 Per	rioden der Eingangsnennfrequenz			3
16 Pe	erioden der Eingangsnennfrequenz			4

^{*} Zeilen mit Buchstaben unter «unmöglich» sind nicht kombinierbar mit vorgängigen Zeilen mit gleichem Buchstaben unter «Sperrcode».

Anwendungen

Stromanschluss in Phase	L1	L2	L3	L1	L2	L3
Spannungsanschluss zwischen	L1 & L2	L2 & L3	L3 & L1	L1 & L3	L2 & L1	L3 & L2
Vektordiagramme	L1 L2					

Stromanschluss in Phase	L3	L1	L2	L
Spannungsanschluss zwischen	L1 & L2	L2 & L3	L3 & L1	L&N
Vektordiagramme	L1 L2	L1 L2	L1 L3 L2	U

Messumformer für Phasenwinkel oder Leistungsfaktor

Elektrische Anschlüsse

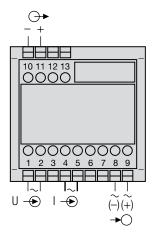


Bild 2. Hilfsenergie-Anschluss an Klemmen 8 und 9.

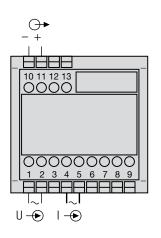


Bild 3. Hilfsenergie intern ab Messeingang, Hilfsenergie-Anschluss entfällt.

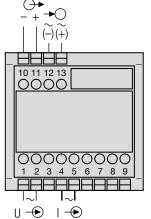
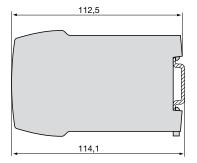


Bild 4. Hilfsenergie-Anschluss auf Niederspannungsseite an Klemmen 12 und 13


= Messeingang = Messausgang = Hilfsenergie

12 una 13					
Messeingänge					
Messaufgabe/Anwendung	Steckerbelegung	Messaufgabe/Anwendung	Steckerbelegung		
Phasenwinkel- oder Leistungsfaktormessung im Einphasen- Wechselstromnetz	L1/L2/L3 ×	Phasenwinkel- oder Leistungsfaktormessung im Drei- oder Vierleiter- Drehstromnetz gleichbelastet U: L1 & L2 I: L1	L1		
Phasenwinkel- oder Leistungsfaktormessung im Drei- oder Vierleiter- Drehstromnetz gleichbelastet U: L2 & L3 I: L2	L1 L2 L3 N	Phasenwinkel- oder Leistungsfaktormessung im Drei- oder Vierleiter- Drehstromnetz gleichbelastet U: L3 & L1 I: L3	L1		
Phasenwinkel- oder Leistungsfaktormessung im Drei- oder Vierleiter- Drehstromnetz gleichbelastet U: L1 & L3 I: L1	1 2 4 5 L1 L2 L3 N	Phasenwinkel- oder Leistungsfaktormessung im Drei- oder Vierleiter- Drehstromnetz gleichbelastet U: L2 & L1 I: L2	L1		
Phasenwinkel- oder Leistungsfaktormessung im Drei- oder Vierleiter- Drehstromnetz gleichbelastet U: L3 & L2 I: L3	L1	Phasenwinkel- oder Leistungsfaktormessung im Drei- oder Vierleiter- Drehstromnetz gleichbelastet U: L1 & L2 I: L3	L1		

Messumformer für Phasenwinkel oder Leistungsfaktor

Messeingänge Messeingänge					
Messaufgabe/Anwendung Steckerbelegung		Messaufgabe/Anwendung	Steckerbelegung		
Phasenwinkel- oder Leistungsfaktormessung im Drei- oder Vierleiter- Drehstromnetz gleichbelastet U: L2 & L3 I: L1	L1	Phasenwinkel- oder Leistungsfaktormessung im Drei- oder Vierleiter- Drehstromnetz gleichbelastet U: L3 & L1 I: L2	L1		

Mass-Skizze

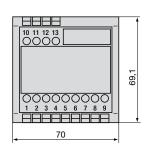


Bild 5. Gehäuse **P13/70** auf Hutschiene (35 x 15 oder 35 x 7,5 mm, nach EN 50 022) aufgeschnappt.

Mass-Skizze

1 Betriebsanleitung dreisprachig: Deutsch, Französisch, Englisch

Camille Bauer Metrawatt AG Aargauerstrasse 7 CH-5610 Wohlen / Schweiz

Telefon: +41 56 618 21 11 Telefax: +41 56 618 21 21 info@camillebauer.com www.camillebauer.com