
Betriebsanleitung

SINEAX VC604s Programmierbarer multifunktionaler Grenzwert-Messumformer

VC604s Bd Version 04 12.22 1000771 000 02

Camille Bauer Metrawatt AG Aargauerstrasse 7 CH-5610 Wohlen/Switzerland Telefon +41 56 618 21 11 Telefax +41 56 618 21 21 info@camillebauer.com www.camillebauer.com


Betriebsanleitung

Programmierbarer multifunktionaler Messumformer SINEAX VC604s

Erst lesen, dann ...

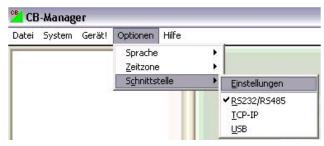
Der einwandfreie und gefahrlose Betrieb setzt voraus, dass diese Betriebsanleitung gelesen und verstanden wurde!

Inhaltsverzeichnis

1.	Funktionsbeschreibung	2
2.	Verbinden mit dem PC und Aufbauen einer	
	Kommunikation via CB-Manager	2
3.	Blockschaltbild	
4.	Technische Daten	4
5.	Signalfluss	7
6.	Modbus-Schnittstelle	10
	6.1 EIA-RS-485 Standard	10
	6.2 Codierung und Adressierung	10
	6.3 Mapping	
	6.4 Geräte-Identifikation	
	6.5 Messwerte	12
	6.6 Konfigurationsparameter	13
7.	Elektrische Anschlüsse	20
8.	Mass-Skizze	21
9.	Zubehör	21
	. Konformitätserklärung	
	<u> </u>	

1. Funktionsbeschreibung

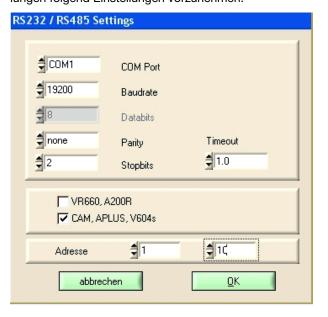
Der VC604s ist ein multifunktionaler Messumformer für Hutschienenmontage mit folgenden Hauptmerkmalen:


- Messung von DC-Spannung, DC-Strom, Temperatur (RTD, TC) und Widerstand
- Sensoranschluss ohne externe Brücken
- 2 Eingänge (z.B. für Sensoren-Redundanz oder Differenzbildung)
- 1 Ausgang (U oder I)
- 2 Eingänge können untereinander verknüpft werden und dem Ausgang zugeordnet werden, wodurch Berechnungen und Sensorüberwachungen (z.B. vorausschauende Wartung der Sensoren) möglich sind
- Systemfähig: Kommunikation über Modbus-Schnittstelle
- 2 frei programmierbare Relais mit Wechselkontakten z.B. zur Grenzwert- oder Alarmsignalisierung
- AC/DC-Weitbereichsnetzteil
- Steckbare hochwertige Schraub- oder Zugfederklemmen

Sämtliche Einstellungen des Gerätes können mittels PC-Software an die Messaufgabe angepasst werden. Die Software dient auch zur Visualisierung, Inbetriebnahme und zum Service.

2. Verbinden des SINEAX VC604s mit dem PC und Aufbauen einer Kommunikation via CB-Manager.

Die Kommunikation des VC604s mit dem PC (CB- Manager) erfolgt über eine RS 232/RS485 Schnittstelle via MODBUS Protokoll.


Hierzu sind folgende Einstellungen zu wählen:

Unter Optionen / Schnittstelle ist die RS 232/ RS485 Schnittstelle auszuwählen.

Dies gilt auch, wenn ein RS485/USB Konverter verwendet wird und der Konverter über den USB Anschluss mit dem Computer verbunden ist.

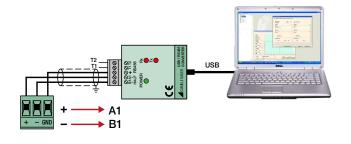
Anschliessend sind unter Optionen / Schnittstelle / Einstellungen folgend Einstellungen vorzunehmen:

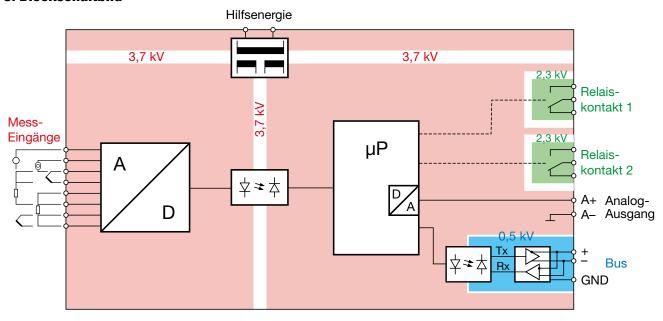
Die vorhandenen COM Ports werden während des Programmstarts und beim Wählen von RS232/RS485 als Kommunikations-Schnittstelle ermittelt. Es werden nur die gefundenen COM Ports zur Auswahl bereitgestellt.

Durch die Einschränkung des Bereiches der möglichen Geräte-Adressen kann zudem die Suche nach angeschlossenen Geräten erheblich beschleunigt werden. Beispiel: Sind nur 2 Geräte angeschlossen, so macht es Sinn den Adressbereich von 1 bis 2 zu wählen.

Alle Einstellungen werden beim Beenden des Programmes gespeichert. Ist das COM-Port beim nächsten Starten des Programmes nicht mehr verfügbar (z.B. weil der Konverter nicht eingesteckt ist), so wird eine andere gültige Schnittstelle eingestellt.

Zur Ermittlung, welcher COM Port dem RS485 Konverter (falls benötigt) zugewiesen wurde, gehen Sie bitte wie folgt vor:


Der COM-Port eines externen RS232- oder RS485-Konverters kann über die Systemsteuerung von Windows ermittelt (und falls notwendig geändert) werden. Beispiel für Windows XP: **Systemsteuerung => System**


In diesem Beispiel sind die COM Ports einer PCMCIA-Karte und eines USB-RS232 Konverter dargestellt:

Silicom Serial Card: COM1USB-RS232 Adapter: COM4

Verwenden Sie den Camille Bauer USB-RS485 Konverter (Artikelnummer 163189) so ist dieser wie folgt anzuschließen:

3. Blockschaltbild

4. Technische Daten

Tabelle 1: Eingangsgrössen, Messbereiche

Messart	Messbereich	Minimale Spanne
DC-Spannung [mV]	−10001000 mV	2 mV
DC-Spannung [V]	−300 300 V	≥1 V
DC-Strom [mA]	−50 50 mA	0,2 mA
Widerstand $[\Omega]$	05000 Ω	8 Ω
RTD Pt100	−200 850 °C	20 K
RTD Ni100	−60 250 °C	15 K
TC Typ B	0 1820 °C	635 K
TC Typ E	−270 1000 °C	34 K
TC Typ J	−210 1200 °C	39 K
TC Typ K	−270 1372 °C	50 K
TC Typ L	−200 900 °C	38 K
TC Typ N	−270 1300 °C	74 K
TC Typ R	−50 1768 °C	259 K
TC Typ S	−50 1768 °C	265 K
TC Typ T	−270 400 °C	50 K
TC Typ U	−200 600 °C	49 K
TC Typ W5Re-W26Re	0 2315 °C	135 K
TC Typ W3Re-W25Re	0 2315 °C	161 K

Messeingang 1 →

Gleichspannung

Messbereich mV Grenzen siehe Tabelle 1

Ri > 10 M Ω .

Überlastbarkeit max. ±1200 mV

Messbereich V Grenzen siehe Tabelle 1

(nur bei entsprechender $Ri = 1.4 M\Omega$,

Geräteausführung) Überlastbarkeit max. ±300 V

Gleichstrom

Grenzen siehe Tabelle 1 Messbereich mA

 $Ri = 11 \Omega$.

Überlastbarkeit max. ±50 mA

Widerstandsthermometer RTD

Messwiderstandstypen Pt100 (IEC 60751),

einstellbar Pt20...Pt1000 Ni100 (DIN 43760), einstellbar Ni50...Ni1000

Messbereichsgrenzen Siehe Tabelle 1

Beschaltung 2-, 3- oder 4-Leiteranschluss

Mess-Strom 0,2 mA

Leitungswiderstand 30 Ω pro Leitung,

bei 2-Leiteranschluss einstellbar

bzw. abgleichbar

Thermoelemente TC

Typ B, E, J, K, N, R, S, T Thermopaare

> (IEC 60584-1) Typ L, U (DIN 43760)

Typ W5Re-W26Re, W3Re-W25Re

(ASTM E988-90)

Messbereichsgrenzen Siehe Tabelle 1 Vergleichsstellen-

kompensation Intern (mit eingebautem Pt100).

mit Pt100 an Klemmen oder ex-

tern mit Vergleichsstelle

–20...70 °C

Widerstandsmessung, Ferngeber, Potentiometer

Messbereichsgrenzen Siehe Tabelle 1

2-, 3- oder 4-Leiteranschluss Beschaltung

Widerstandsferngeber Typ WF und WF DIN

Mess-Strom 0.2 mA

Leitungswiderstand 30 Ω pro Leitung,

bei 2-Leiteranschluss einstellbar

bzw. abgleichbar

Messeingang 2 -

Gleichstrom

Messbereich mA Wie Messeingang 1

Gleichspannung

Messbereich mV Wie Messeingang 1

Widerstandsthermometer RTD

Wie Messeingang 1 ausser:

Beschaltung 2- oder 3-Leiteranschluss

Thermoelemente TC

Wie Messeingang 1

Widerstandsmessung, Ferngeber, Potentiometer

Wie Messeingang 1 ausser:

Beschaltung 2- oder 3-Leiteranschluss

Hinweise

Es stehen folgende Geräteausführungen zur Verfügung:

a) VC604s mit Messeingang für 1x Gleichstrom [mA] und

1x hohe Gleichspannung [V]

Hier können die Messarten Gleichspannung [V] und Gleichstrom [mA] bei der Gerätekonfiguration dem

Eingang 1 oder 2 zugeordnet werden.

b) VC604s mit Messeingang für 2x Gleichstrom [mA] Die verschiedenen Geräteausführungen sind fest bzw.

können nicht umprogrammiert werden!

Hinweise

Die Messeingänge 1 und 2 sind galvanisch verbunden. Bei der Verwendung von 2 Eingangs-Sensoren oder Eingangsgrössen Kombinationsmöglichkeiten in Tabelle 3 (Seite 21) und Beschaltungshinweise (Seite 20) beachten!

Analog Ausgang ⊖►

Gleichstrom

Ausgangsbereich ± 20 mA,

Bereich beliebig einstellbar

Bürdenspannung max. 12 V < 18 V Leerlaufspannung

einstellbar, max. ±22 mA Begrenzung

Restwelligkeit <50 µA pp (nach Tiefpass 10 kHz)

Quellenwiderstand $>5 M\Omega$

Gleichspannung

Ausgangsbereich \pm 10 V.

Bereich beliebig einstellbar

max. 20 mA Belastung Strombegrenzung ca. 30 mA

einstellbar, max. ±11 V Begrenzung

Restwelligkeit <20 mV pp

(nach Tiefpass 10 kHz)

Quellenwiderstand <20

Ausgangseinstellungen

Begrenzung

Gain-/Offsettrimmung

Invertierung

Relais-Kontaktausgänge □¾

Kontakt 1 Pol, Umschaltkontakt

Schaltleistung AC: 2 A / 250 V DC: 2 A / 30 V

Bus-/Programmieranschluss →

Schnittstelle, Protokoll RS-485, Modbus RTU Baudrate 9,6...115,2 kBaud, einstellbar

Übertragungsverhalten

Messgrössen

für den Ausgang

- Eingang 1 Eingang 2
- Eingang 1 + Eingang 2 • Eingang 1 - Eingang 2 Eingang 2 – Eingang 1 Eingang 1 · Eingang 2
- Minimalwert, Maximalwert oder Mittelwert von Eingang 1 und Eingang 2

 Sensorredundanz Eingang 1 oder Eingang 2

Übertragungsfunktionen Linear, Absoluter Betrag,

Skalierung (Gain/ Offset), Lupen-

funktion (Zoom) Benutzerspezifisch via Stützwerttabelle

(24 Stützwerte pro Messgrösse)

Einstellzeit: einstellbar 1...30 s

Grenzwerte und Überwachungen

Anzahl Grenzwerte Messgrössen für die Grenzwerte

Eingang 1

Eingang 2

Messgrösse für die Ausgänge

• Eingang 1 – Eingang 2 (z.B. Driftüberwachung bei

2 Sensoren)

 Eingang 2 – Eingang 1 (z.B. Driftüberwachung bei

2 Sensoren)

Funktionen Absoluter Betrag

Gradient dx/dt (z.B. Temperatur-

gradient-Überwachung)

Zeitverzögerung einstellbar 0...3600 s Signalisierung Relais-Kontakt, Alarm-LED,

Status 1, Status 3

Fühlerbruch- und

Kurzschlussüberwachung Messeingang

Signalisierung Relais-Kontakt, Alarm-LED,

Status 1

Ausgangswert im Fehlerfall

Signalisierung an

Alarm-LED Bei einem Fühlerfehler wird der

fehlerhafte Eingang (1 oder 2) durch die Anzahl Blinken der Alarm-LED (1x oder 2x) signali-

siert.

Bei Fehler an beiden Eingängen:

Alarm-LED ohne Blinken.

Andere Überwachungen

Driftüberwachung Überwachung der Messwert-

Differenz zwischen 2 Eingangs-Sensoren über eine bestimmte Zeitspanne (z.B. wegen unterschiedlicher Sensoransprech-

zeiten).

Beim Überschreiten des Grenzwertes über diese Zeit wird ein

Alarm signalisiert.

(Siehe Grenzwerte 1 und 2)

Sensorredundanz Messung mit 2 Temperatursen-

> soren; bei Ausfall des Sensor 1 (Fehlerfall) wird zur Überbrückung auf Sensor 2 umgeschaltet

(siehe Messgrössen für Ausgänge)

Alarm-Signalisierungen

Zeitverzögerung einstellbar 0...60 s

Alarm-LED "ERR"

Bei aktiviertem Relais Relais-Kontakt

leuchtet die gelbe LED; Alarmfunktion invertierbar

Ausgangswert

im Fehlerfall Für Fühlerbruch und Kurzschluss.

Wert einstellbar -10...110%

Hilfsenergie

Nennspannung UN	Toleranz
24230 V DC *	±15%
100230 V AC, 45400 Hz	±15%

^{*} Bei einer Hilfsenergiespannung >125 V DC muss im Hilfsenergiekreis eine externe Sicherung vorgesehen werden.

Leistungsaufnahme 2,0 W bzw. 5,5 VA

Anzeigeelemente am Gerät

LED	Farbe	Funktion
ON/ERR	grün	Power on
	rot	Alarm
	blinkend	Kommunikation aktiv
1 _/_	gelb	Relais 1 ein
2 _/_	gelb	Relais 2 ein

Konfiguration, Programmierung

Bedienung mit PC-Software «CB-Manager»

Meer

Genauigkeitsangaben (nach EN 60770-1)

Referenzbedingungen

Umgebungstemperatur 23 °C \pm 2 K Hilfsenergie 24 V DC Bezugswert Messspanne

Einstellungen Eingang 1: Gleichspannung mV,

0...1000 mV

Ausgang 1: 4...20 mA, Bürdenwi-

derstand 300 Ω Netzfrequenz 50 Hz, Einstellzeit 1 s

Eingang 2, Ausgang 2, Relais, Überwachungen aus bzw. nicht aktiv, bei Spannungsausgang: Bereich 0...10 V, Bürdenwider-

stand >1 M Ω

Einbaulage Vertikal, freistehend

Grundgenauigkeit

Bei Referenzbedingungen ±0,1%

Andere Messarten und Eingangs-Bereiche:

RTD Pt100, Ni100 $\pm 0,1\% \pm 0,2$ K Widerstandsmessung $\pm 0,1\% \pm 0,1$ Ω

TC Typ K, E, J, T, N, L, U $\pm 0.1\% \pm 0.4$ K, Messwert > -100 °C

TC Typ R, S ±0,1% ±2,4 K

TC Typ B $\pm 0.1\% \pm 2.4$ K, Messwert > 300°C

TC W5Re-W26Re,

Zusatzfehler (additiv)

Hoher Bereichs-Anfangswert

(Anfangswert >40%

vom Endwert): ±0,1% vom Endwert

Kleiner Ausgangsbereich ±0,1% * (Referenz-Bereich / neu-

er Bereich)

Vergleichsstellen-

kompensation intern ±3 K

Lupenfunktion ± Zoomfaktor x (Grundgenauig-

keit + Zusatzfehler)

Zoomfaktor= Messgrössenbe-

reich / Zoombereich

Einflusseffekte

Umgebungstemperatur ±0,1% pro 10 K bei Referenz-

bedingungen

Andere Einstellungen:

Grundgenauigkeit und Zusatzfeh-

ler pro 10 K

Langzeitdrift $\pm 0.1\%$ Gleichtakteinfluss $\pm 0.01\%$

Umgebungsbedingungen

Betriebstemperatur –25 ... +55 °C Lagertemperatur –40 ... +70 °C

Relative Luftfeuchte ≤75%, keine Betauung Einsatzbereich Innenräume bis 2000 m über

Einbauangaben

Bauform Hutschienengehäuse U4,

Brennbarkeitsklasse V-0 nach UL94

Abmessungen Siehe Mass-Skizze

Montage Für Schnappbefestigung auf

Hutschiene (35 x 15 mm oder 35 x 7,5 mm) nach EN 50022

Klemmen Steckbar, 2,5 mm²

Frontstecker-Zugfederklemme

1.5mm²

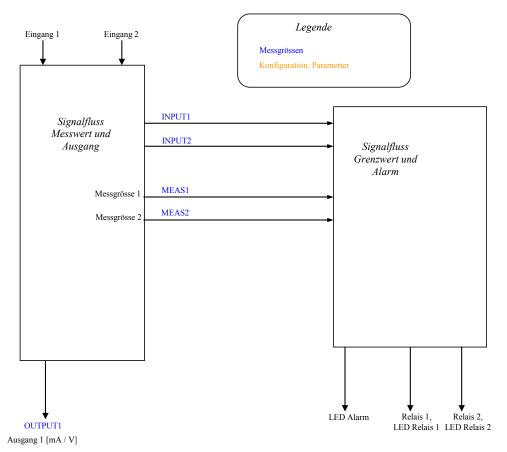
Gewicht 150 g

Produktesicherheit, Vorschriften

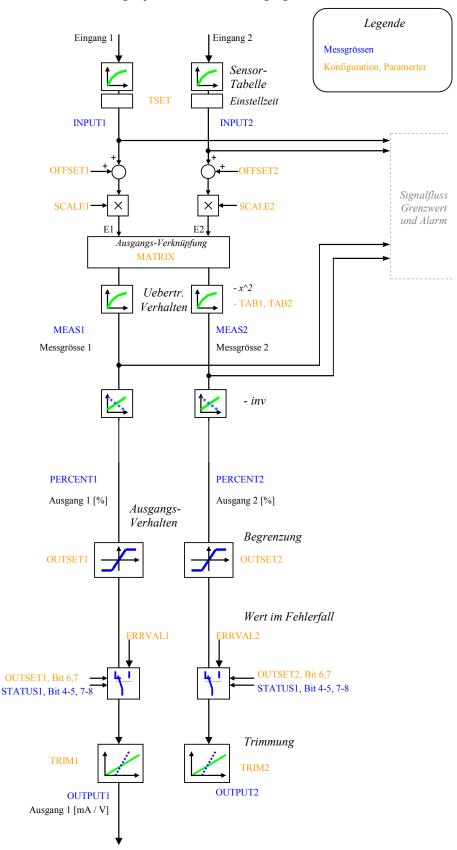
Elektromagnetische Vertäglichkeit	EN 61000-6-2 / 61000-6-4
Schutzart (nach EN 60529)	Gehäuse IP 40 Anschlussklemmen IP20
Elektrische Ausführung	Nach EN 61010
Verschmutzungsgrad	2
Zwischen Hilfsenergie und allen Kreisen und zwischen dem Messein- gang(1 + 2) und allen Kreisen	Verstärkte Isolierung Überspannungskategorie III Arbeitsspannung 300 V Prüfspannung 3,7 kV AC rms
Zwischen dem Ausgang und den Relais-Kontak- ten	Verstärkte Isolierung Überspannungskategorie II Arbeitsspannung 285 V Prüfspannung 2,3 kV AC rms
Zwischen dem Ausgang und dem Bus-Anschluss	Funktionsisolierung Arbeitsspannung <50 V Prüfspannung 0,5 kV AC rms
Umweltprüfungen	EN 60068-2-1/-2/-3 EN 60068-2-27 Schock: 50g, 11ms, Sägezahn, Halbsinus EN 60068-2-6 Vibration: 0.15mm/2g, 10150 Hz, 10 Zyklen

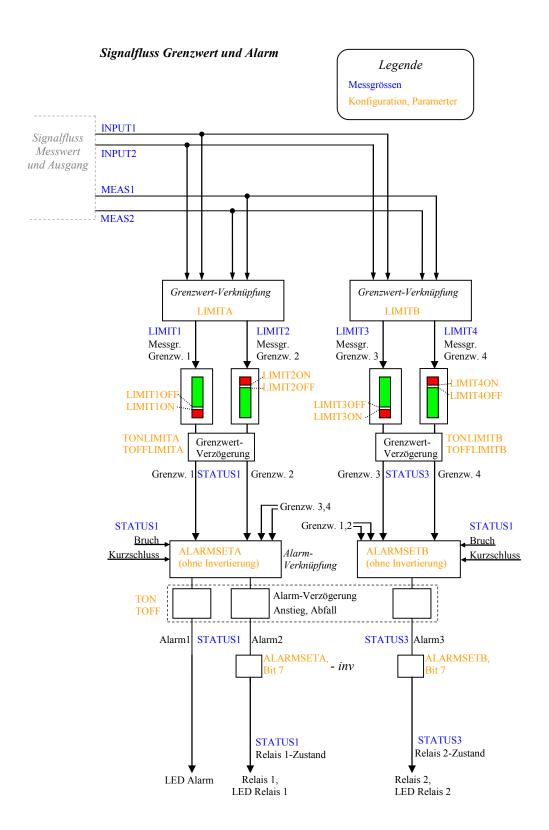
Typenschild

Typens	Cilliu			
	5	Sineax \	VC604s	Camille Bauer AG Switzerland
	Grenzw	ert-Univers	salmessumformer	Man: 12 / 7
	multifun	ctional safe	ety value converter	NLB: XXXX
Ord: 99	99/12345	6/999/001		
<u> </u>		CE		
→ ○	+ 17 - 18	24230\	/DC / 100230VAC 45-	400Hz, 5VA
⊕	INPUT	1: 420m/	A INPUT	2 : 420mA
Ę	 •5+) •4-		6+	
\rightarrow	+ 9 - 13	OUT1: 4	20mA	
₩	+ - GND	RS485 M	lodbus	
	NC 10 COM 11 NO 12	REL1	250VAC/2A, 30VE)C/2A
	NC 14 COM 15 NO 16	REL2	23377.0727, 0072	


Erklärung der Symbole auf dem Typenschild

Symbol	Bedeutung
	Doppelte Isolierung, Gerät der Schutzklasse 2
CE	CE-Konformitätszeichen. Das Gerät erfüllt die Bedingungen der zutreffenden EG-Richtlinien.
\triangle	Achtung! Allgemeine Gefahrenstelle. Betriebsanleitung beachten.
X	Geräte dürfen nur fachgerecht entsorgt werden!
→	Allgemeines Symbol: Eingang
\ominus	Allgemeines Symbol: Ausgang
→○	Allgemeines Symbol: Hilfsenergie-Versorgung
◆	Allgemeines Symbol: Kommunikation
□ ; *	Allgemeines Symbol: Relais


5. Signalfluss

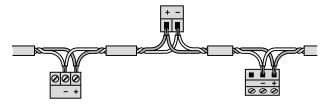

Folgende Grafik zeigt den Signalfluss im VC604s. Es werden alle relevanten Messgrössen und Parameter dargestellt, welche den Signalfluss mitbestimmen.

Signalfluss Übersicht

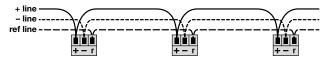
Signalfluss Messwert und Ausgang

6. Modbus-Schnittstelle

6.1 EIA-RS-485 Standard

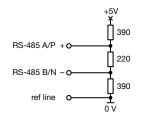

Der EIR-RS-485 Standard definiert die physikalische Schicht der Modbus-Schnittstelle.

Codierung

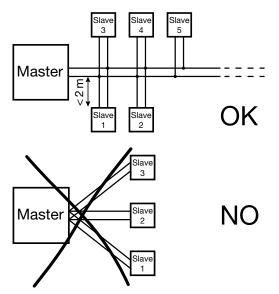

Die Daten werden in serieller Form über den 2-Draht Bus übertragen. Die Information wird im NRZ-Code als Differenzsignal codiert. Die positive Polarität signalisiert eine logische 1, die negative Polarität signalisiert die logische 0.

Anschlüsse

Als Buskabel wird die Verwendung eines geschirmten, verdrillten, 2-adrigen Kabels empfohlen. Die Schirmung dient der Verbesserung der elektromagnetischen Verträglichkeit (EMV). Die Bezeichnung der Leiter A und B ist je nach Informationsquelle widersprüchlich.



Der Potentialunterschied aller Busteilnehmer darf \pm 7V nicht überschreiten. Es wird deshalb die Verwendung des Schirms oder eines dritten Leiters (ref line) zur Schaffung des Potentialausgleiches empfohlen.



Topologie

Die beiden Enden des Buskabels müssen jeweils mit einem Leitungsabschluss versehen werden. In Ergänzung zum Leitungsabschlusswiderstandes RT des EIA-RS-485-Standards muss zusätzlich ein Widerstand RU (Pullup) gegen die Versor-

gungsspannung und ein Widerstand RD (Pulldown) gegen das Bezugspotential geschaltet werden. Mit diesen beiden Widerständen wird ein definiertes Ruhepotential (Idle) auf der Leitung sichergestellt, wenn kein Teilnehmer sendet.

Systemanforderungen

Kabel: verdrillte 2-Drahtleitung, Wellenwider-

stand 100 bis 130 Ω , min. 0.22mm²

(24AWG)

Leitungslänge: maximal 1'200m, abhängig von der

Übertragungsgeschwindigkeit

Teilnehmer: maximal 32 pro Segment

Geschwindigkeit: 9'600, 14'400, 19'200, 38'400, 56'000,

57'600, 115'200 Baud

Mode: 11 Bit-Format - 2 Stoppbit ohne Parität

oder 1 Stoppbit mit gerader/ungerader

Parität

6.2 Codierung und Adressierung

Adressierung

Im Telegramm sind alle Datenadressen auf Null bezogen. Das erste Datenelement wird immer über die Adresse 0 angesprochen. Zum Beispiel wird die Coil, die im Gerät als "Coil 1" bekannt ist, im Telegramm als "Coil 0" angesprochen. Die Coil 127 wird als 0x007E adressiert.

Das Holding-Register 40001 wird im Telegramm als Register 0 adressiert. Der Funktionscode des Telegramms sagt bereits, dass es sich um ein "Holding-Register" handelt. Folglich ist der "4XXXX" Hinweis implizit.

Das Holding-Register 40108 wird als 0x006B (107 dezimal) adressiert.

Serialisierung

Die Spezifikation definiert die Telegramme als Bytefolgen. Für die korrekte Serialisierung der Bytes (MSB- oder LSB-First) ist der entsprechende Physical Layer (RS485, Ethernet) verantwortlich. Die RS485 (UART, COM) übermittelt das "Least Significant Bit" zuerst (LSB First) und fügt die Synchronisations- und Sicherungsbits hinzu (Startbit, Paritätsbit und Stoppbit).

Star	1	2	3	4	5	6	7	8	Par	Stop

Bits

Bits werden innerhalb eines Bytes konventionell mit dem MSB (Bit 7) ganz links und dem LSB (Bit 0) ganz rechts dargestellt (0101'1010 = 0x5A = 90). Ein Beispiel zur Abfrage der Coils 20 bis 40 des Slaves 17.

Byte	Anfrage	
0	Slave-Adresse	0x11
1	Funktions-Code	0x01
2	Startadresse	0x00
3	19 = Coil 20	0x13
4	Anzahl	0x00
5	2040 = 21	0x15

Antwort	
Slave-Adresse	0x11
Funktions-Code	0x01
Byte Count	0x03
Byte 0	0xCD
Byte 1	0x6B
Byte 2	0x01

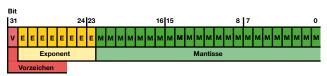
Die Startadresse in der Anfrage plus die Bitposition im Antwortbyte 0 entspricht der Coiladresse. Angefangene Bytes werden mit Nullen aufgefüllt. Coil 27...20 = 0xCD = 11001101b → Coil20 = ON, Coil21 = OFF, Coil22 = ON, usw.

Bytes

Modbus kennt keinen Datentyp Byte oder Charakter (siehe Adressraum). Strings oder Byte-Arrays werden in "Holding Registern" abgebildet (2 Charakter pro Register) und als "Charakter-Strom" übertragen. Bsp. "Hello_World"

Register	HEX	cha	ar	
40101	0x4865	,H'	,e'	
40102	0x6C6C	,l'	,l'	
40103	0x6F5F	,0'	,_,	

Register
40104
40105
40106


HEX	cha	r
0x576F	,W'	,0'
0x726C	,r'	,l'
0x6400	,d'	

Words

Register oder Wörter werden nach Spezifikation im "Big Endian" Format übertragen. Bsp. Read Holding Register 40101 des Slaves 17.

Rea

Modbus kennt keinen Datentypen zur Darstellung von Gleitpunktzahlen. Prinzipiell lassen sich beliebige Datenstrukturen auf die 16Bit-Register abbilden ("casten"). Der IEEE 754 Standard bietet sich als meist benutzter Standard zur Darstellung von Gleitkommazahlen an.

Das erste Register beinhaltet die Bits 15 – 0 der 32 Bit Zahl (Bit 0...15 der Mantisse).

Das zweite Register beinhaltet die Bits 16 – 32 der 32 Bit Zahl (Vorzeichen, Exponent und Bit 16- 22 der Mantisse).

6.3 Mapping

Adressraum

Der Adressraum lässt sich, entsprechend den 4 Datentypen, in 4 Adressräume aufteilen.

Raum	r/w	Adressbereich	Funkti	onscode
Coil	lesbar schreibbar	00001 - 09999	0x01 0x05 0x0F	Read Coil Status ¹⁾ Force Single Coil ¹⁾ Force Multiple Coils ¹⁾
Discrete input	nur lesbar	10001 - 19999	0x02	Read Input Status 1)
Input register	nur lesbar	30001 - 39999	0x04	Read Input Register 1)
Holding register	lesbar schreibbar	40001 - 49999	0x03 0x06 0x10	Read Holding Registers Force Single Register ¹⁾ Preset Multiple Registers

¹⁾ nicht implementiert

Zur Reduzierung der Kommandos wurde das Geräteabbild, soweit wie möglich, in "Holding Register" abgebildet.

Segmente

Adresse	Beschreibung	erlaubte Funktionscodes			
40257 - 40289 40400 - 40402 40515 - 40516	Aktionen Messwerte, Status Reserviert Einstellungen (Modbus) Konfigurationsdaten	0x03 0x10	Read Holding Registers Preset Multiple Registers		
41076	Geräteausführung	0x03	Read Holding Registers		

Syntax

Adresse	Startadresse des beschriebenen Datenblockes (Register, Coil oder Input Status)
Bezeichnung	eindeutige Variablen- oder Strukturbezeichnung
Datentyp	Datentyp der Variable (U: unsigned, INT: integer, 8/16/32 Bit, REAL oder CHAR[])
#	Offset von der Startadresse in der Einheit des Datentyps, für Byte 0: Low-, 1: High-Byte
Default	Wert bei Auslieferung oder nach einem Hardware- Reset
Beschreibung	genaue Erläuterungen zur beschriebenen Größe

6.4 Geräte-Identifikation

Das Gerät wird mit "Read Slave ID" identifiziert.

Funktion 11h: Report Slave ID

Master Telegramm:

Geräte- Adresse	Funktion	CRC	
ADDR	0x11	L0	HI

Slave Telegramm:

Geräte- Adresse	Funktion	Anzahl Datenbytes	Slave ID	Sub ID	Data 2	CF	RC
ADDR	0x11	3				L0	HI

Geräte- ID	Sub-ID	Gerät	Bezeichnung
0x01	0x00	VR660	Temperaturregler
0x02	0x00	A200R	Display
0x03	0x01	CAM	Universelle Messeinheit für Starkstromgrössen
0x04	0x00	APLUS	Multifunktionaler Anzeiger
0x05	0x00	V604s	Universalmessumformer
0x05	0x01	VB604s	Universalmessumformer Multi-In-Out
0x05	0x02	VC604s	Universalmessumformer 2. Relais
0x05	0x03	VQ604s	Universalmessumformer schnell

Geräte Informationen

Adresse	Bezeichnung	Datentyp	Besch	reibung
41076	DEVICE	UINT16	Geräte	-Ausführung
			Bit	Beschreibung
			0	reserviert
			1	reserviert
			2	0: V / mA-Eingänge
				1: 2 x mA-Eingänge
			3-15	reserviert

6.5 Messwerte

Aktionen auslösen

Adresse	Bezeichnung	Datentyp	#	Default	Beschreibung
40209	ACTION	UINT16		0	Mit diesem Register werden Aktionen gestartet.
					Aktion Beschreibung
					Eingang 1: Bei kurzgeschlossenen Eingangsklemmen wird ein Leitungsabgleich durchgeführt und die gemessenen Parameter im Gerät gespeichert. Signalisiert wird dieser Vorgang durch Blinken der grünen LED.
					19 Leitungsabgleich bei Eingang 2 (wie Eingang 1)
40210	ACTDAT				Zusatz-Informationen für das Ausführen einer Aktion.

Simulation von Ausgangsgrössen

- Durch das Schreiben in die Register PERCENT1, PERCENT2, OUTPUT1, OUTPUT2 wird der Signalfluss zur jeweiligen Grösse unterbrochen und der gewünschte Wert vorgegeben (Es kann aber nicht gleichzeitig Prozent und Ausgangswert simuliert werden).
 - Der Zustand des Simulationsmodus kann im Statusregister STATUS2 gelesen werden.
- Das Beenden des Simulationsmodus geschieht durch das Schreiben von 0 in die jeweiligen Bits im Register STATUS2.

Momentane Messgrössen

Adresse	Bezeichnung	Datentyp	#	Default	Beschreibung
Adresse 40257	Bezeichnung STATUS1	Datentyp UINT16	#	Default 0	Status 1 Bit Beschreibung 0 reserviert 1 reserviert 2 Gerätefehler 3 Parameterfehler 4 Fühlerbruch Eingang 1 5 Fühlerkurzschluss Eingang 1 6 Reserviert 7 Fühlerbruch Eingang 2 8 Fühlerkurzschluss Eingang 2 9 Reserviert 10 Alarm 1 11 Alarm 2 (Relais 1-Zustand vor der Invertierung) 12 Grenzwert 1
40258	STATUS2	UINT16		0	13 Grenzwert 2 14 Relais 1-Zustand 15 Gerätereset oder neue Parameterwerte Zustand des Simulationsmodus: Ein gesetztes Bit signalisiert den Simulationsmodus des jeweiligen Registers. Bit Beschreibung 0 Ausgang 1 (PERCENT1) 1 Ausgang 1 (OUTPUT1) 2 Ausgang 2 (PERCENT2)
40259	INPUT1	REAL		0.0	3 Ausgang2 (OUTPUT2) Der Simulationsmodus wird beendet durch das Schreiben von Nullen in die jeweiligen Bitpositionen (03). Messwert Eingang 1
40261	INPUT2	REAL		0.0	Messwert Eingang 2
40263	MEAS1	REAL		0.0	Messgrösse für den Ausgang 1
40265	MEAS2	REAL		0.0	Messgrösse für den Ausgang 2
40267	LIMIT1	REAL		0.0	Messgrösse für den Grenzwert 1
40269	LIMIT2	REAL		0.0	Messgrösse für den Grenzwert 2
40271	T_JUNCTION1	REAL		0.0	Vergleichsstellentemperatur Eingang 1
40273	T_JUNCTION2	REAL		0.0	Vergleichsstellentemperatur Eingang 2
40275	ELAPSED	UINT32		0	Betriebsstundenzähler [s]
40277	PERCENT1	REAL		0.0	Ausgang 1: Skalierte Ausgangsgrösse in %
40279	PERCENT2	REAL		0.0	Ausgang 2: Skalierte Ausgangsgrösse in %
40281	OUTPUT1	REAL		0.0	Ausgang 1 [mA] / [V]
40283	OUTPUT2	REAL		0.0	Ausgang 2 [mA] / [V]
40285	LIMIT3	REAL		0.0	Messgrösse für den Grenzwert 3

40287	LIMIT4	REAL	0.0	Messgrösse für den Grenzwert 4
40289	STATUS3	UINT16	0	Status 3
				Bit Beschreibung
				0 Alarm 3 (Relais 2-Zustand vor der Invertierung) 1 Grenzwert 3 2 Grenzwert 4 3 Relais 2-Zustand

6.6 Konfigurationsparameter

Einstellungen

Adresse	Bezeichnung	Datentyp	#	Default	Beschreibung
40515	DEVADDR	UINT16		01h	MODBUS-Slaveadresse (1247)
40516	MODBUS	UINT16		3222h	MODBUS-Einstellungen
					Bit Beschreibung
					0-2 Baudrate
					0: 9600
					1: 14400
					2: 19200
					3: 38400
					4: 56000
					5: 57600
					6: 115200
					7: reserviert
					3 O: Odd Parity
					1: Even Parity
					4 0: Parity disabled
					1: Parity enabled
					5 0: 1 Stopbit
					1: 2 Stopbits
					8-15 Response-Delay [ms] (5255)

Rücksetzen der Kommunikations-Einstellungen

Sind die MODBUS-Einstellungen einmal im Gerät gespeichert, gibt es keinen Weg mehr, mit dem Gerät zu kommunizieren, ohne dass diese Einstellungen bekannt sind.

Mit folgendem Handgriff ist es möglich, die MODBUS-Einstellungen wieder in den Auslieferungszustand zu setzen:

Geräteadresse: 01hBaudrate: 19200Parity: NoneStopbits: 2

Ein dafür vorbereiteter Stecker (Klemme + ist mit 1 kOhm Widerstand mit Klemme GND verbunden) wird vor dem Einschalten des Gerätes an die RS485-Schnittstelle angeschlossen.

Nach dem Einschalten des Gerätes blinkt die ON/ERR LED für ca. 30 Sekunden rot/grün. Danach blinkt sie für 30 Sekunden grün. Innerhalb dieser 30 Sekunden muss nun der Stecker wieder vom Gerät entfernt werden.

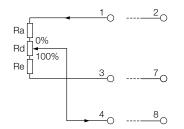
Nachdem dieser Vorgang erfolgreich durchgeführt worden ist, sind wieder die Default-Einstellungen der Kommunikation im Gerät gespeichert.

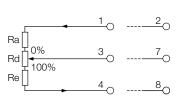
Wird der beschriebene Ablauf nicht eingehalten, so werden die Schnittstellenparameter nicht verändert.

Konfiguration

Adresse	Bezeichnung	Datentyp	#	Default	Beschreibung	
40517	DATE	UINT32		0	Konfigurationsdatum (UTC-Zeitstempel in Sekunden ab 1.1.1970)	
40519	TAG	CHAR[8]		"VC604s"\0	Gerätetext	
40523	INPUT1	UINT8	0	00h bei 2xmA:	ei 2xmA: FFh: Messung ist inaktiv	
				40h	Beschaltungsvariante A	Klemme
					00h: Spannungsmessung [mV]	3,4
					04h: Thermoelement intern kompensiert [K]	3,4
					60h: Thermoelement mit ext. Vergleichsstellenthermostat [K]	3,4
					21h: Widerstandsthermometer 2-Leiter [K]	1,4
					22h: Widerstandsthermometer 3-Leiter [K]	1,3,4
					23h: Widerstandsthermometer 4-Leiter [K]	1,2,3,4
					24h: Thermoelement mit ext. Pt100 an Klemmen 1-4 [K]	1,3,4
					44h: Thermoelement mit ext. Pt100 an Klemmen 2-8 [K]	3,4,2,8
					01h: Widerstandsmessung 2-Leiter $[\Omega]$	1,4
					02h: Widerstandsmessung 3-Leiter $[\Omega]$	1,3,4

			1	FF	03h: Widerstandsferngeber WF [Ω] 62h: Widerstandsferngeber WFDIN [Ω] 20h: Spannungsmessung [V] 40h: Strommessung [MA] 06h: Fühler geerdet: Spannungsmessung [mV] 07h: Fühler geerdet: TC intern kompensiert [K] 66h: Fühler geerdet: TC, ext. Vergleichsstellenthermostat [K] 27h: Fühler geerdet: TC mit ext. Pt100 an Klemmen 1-4 [K] Beschaltungsvariante B 10h: Spannungsmessung [mV] 14h: Thermoelement intern kompensiert [K] 70h: Thermoelement mit ext. Vergleichsstellenthermostat [K] 31h: Widerstandsthermometer 2-Leiter [K] 32h: Widerstandsthermometer 3-Leiter [K] 54h: Thermoelement mit ext. Pt100 an Klemmen 1-4 [K] 34h: Thermoelement mit ext. Pt100 an Klemmen 2-8 [K] 11h: Widerstandsmessung 2-Leiter [Ω] 52h: Widerstandsferngeber WF [Ω] 72h: Widerstandsferngeber WF [Ω] 72h: Widerstandsferngeber WFDIN [Ω] 16h: Fühler geerdet: Spannungsmessung [mV] 17h: Fühler geerdet: TC, ext. Vergleichsstellenthermostat [K] 50h:	1,2,3,4 1,3,4 1,3,4 6,4 5,4 3,4 3,4 3,4 1,3,4 7,8 7,8 2,8 2,7,8 2,
					2: Kundenspeziensche Kenninne (nur mit NLB) 3: TC Typ B 4: TC Typ E 5: TC Typ J 6: TC Typ K 7: TC Typ L 8: TC Typ N 9: TC Typ R 10: TC Typ S 11: TC Typ T 12: TC Typ U 13: TC Typ W5-W26Re 14: TC Typ W3-W25Re	
40524	INPRANGE1	REAL	Mes	sbereich Einga		
			U[r U[v RT TC R:	mV]: ±0 /]: ±0 D: gei : gei 0 . sie mA]: ±0	reich minimale Spanne I mV 1000 mV 2 mV I V 300 V 1 V mäss Fühler-Grenzen mäss Fühler-Grenzen 5000 [Ω] 8 0hm he Spezialfall WF, WFDIN * 50 mA 0,2 mA	
			_	1	ameterkorrektur ²	
			1	0.0 bei 2xmA: 4.0 1000.0	Messbereichs-Anfang Messbereichs-Ende	
				bei 2xmA: 20.0		
40528	SCALE1	REAL		1.0	Skalierungsfaktor für INPUT1	
40530	SENSVAL1	REAL		100.0	Eingang 1: Fühlerwert [Ω] bei 0°C (z.B. 100.0 bei Pt100) Pt20 Pt1000 Ni50 Ni1000 WF, WFDIN: SENSVAL1=Rd Automatische Parameterkorrektur²	


* Widerstandsferngeber


Bei den Widerstands-Ferngebern wird der Messbereich durch drei Widerstandswerte definiert:

Widerstandsferngeber WF+WF-DIN

Beim Eingang 2 gelten dieselben Regeln wie beim Eingang 1.

Parameter	Bedeutung
INPRANGE1, Messbereichs-Anfang	Ra
INPRANGE1, Messbereichs-Ende	Re
SENSVAL1	Rd

40532	REF1	REAL		0.0	Referenzwert Eingang 1: – Leitungswiderstand $[\Omega]$ bei 2-Leiter-Messung: 030 Ohm – Referenztemperatur bei TC ext. komp.: -20 70 °C Automatische Parameterkorrektur ²	
40534	INPUT2	UINT8	0	FFh bei 2xmA: 50h	Messart Eingang 2 (wie Eingang 1)	
			1	FFh	Sensortyp Eingang 2 (wie Eingang 1)	
40535	INPRANGE2	REAL	Mes	sbereich Eing	ang 2 (wie Eingang 1)	
			0	0.0 bei 2xmA: 4.0	Messbereichs-Anfang	
			1	1000.0 bei 2xmA: 20.0	Messbereichs-Ende	
40539	SCALE2	REAL		1.0	Skalierungsfaktor für INPUT2	
40541	SENSVAL2	REAL		100.0	Eingang 2: Fühlerwert [Ω] bei 0°C (z.B. 100.0 bei Pt100) Pt20 Pt1000 Ni50 Ni1000 WF, WFDIN: SENSVAL1=Rd Automatische Parameterkorrektur²	
40543	REF2	REAL		0.0	Referenzwert Eingang 2: – Leitungswiderstand $[\Omega]$ bei 2-Leiter-Messung: 0 30 0hm – Referenztemperatur [°C] bei TC ext. komp.: -20 70 °C	
40545	FREQ	REAL		50.0	Netzfrequenz [Hz]: 10 100 Hz Automatische Parameterkorrektur ²	
40547	TSET	REAL		1.0	Einstellzeit (99%) [s] (1 30) Automatische Parameterkorrektur ²	
40549	SETTING	UINT16		00h	Einstellungen Bit Beschreibung 0 Erkennung der Anschlussart (2L, 3L, 4L) nach dem Reset 1 Eingang 1: Bruchüberwachung aktiviert 2 Eingang 2: Bruchüberwachung aktiviert 3 Eingang 1: Kurzschlussüberwachung aktiviert 4 Eingang 2: Kurzschlussüberwachung aktiviert	
40550	MATRIX	UINT8	Verk 0	müpfung der E	Ausgang 1: 00h: nicht verwendet 01h: Eingang 1 02h: Eingang 2 03h: Eingang 1 + 2 04h: Eingang 1 + 2 05h: Eingang 2 - 1 06h: Eingang 2 - 1 06h: Eingang 1 * 2 07h: Minimalwert (Eingang 1,2) 08h: Maximalwert (Eingang 1,2) 08h: Mittelwert (Eingang 1,2) 81h: Sensorredundanz: Eingang 1 im Normalfall 82h: Sensorredundanz: Eingang 2 im Normalfall 87h: Sensorredundanz: Minimalwert (Eingang 1,2) 88h: Sensorredundanz: Minimalwert (Eingang 1,2) 88h: Sensorredundanz: Minimalwert (Eingang 1,2) 88h: Sensorredundanz: Minimalwert (Eingang 1,2) 89h: Sensorredundanz: Mittelwert (Eingang 1,2) 80h: Sensorredundanz: Mittelwert (Eingang 1,2)	

Adresse	Bezeichnung	Datentyp	#	Default	Beschreibung
					Sensor-Redundanz - Messgrösse im Fehlerfall: INPUTx, welche keinen Fehler aufweist - Einschränkungen: - Gleicher Messbereich für beide Eingänge - gleiche Skalierungsfaktoren (immer 1.0) - kein Ausgangswert im Fehlerfall - Temperaturmessung - Bruch- oder Kurzschlussüberwachung aktiv
			1	00h bei 2xmA: 02h	Ausgang 2 (wie Ausgang 1)
40551	LIMITA	UINT8	Eins 0	tellung der Gr	Messgrösse für den Grenzwert 1 Bit Beschreibung 0-4 Grenzwert 0: nicht verwendet
			1	0	Messgrösse für den Grenzwert 2 (wie Grenzwert 1)
40552	ALARMSETA	UINT8	nela 0	is und Alarm (Relais 1, LED Relais 1 Bit Beschreibung O Grenzwert 1 1 Grenzwert 2 2 Fühlerbruch Eingang 1 oder 2 3 Fühlerkurzschluss Eingang 1 oder 2 4 reserviert 5 Grenzwert 3 6 Grenzwert 4 7 Invertiert Diese Einstellungen können alle miteinander kombiniert werden. Alarm 1, LED Alarm Bit Beschreibung O Grenzwert 1 1 Grenzwert 2 2 Fühlerbruch Eingang 1 oder 2 3 Fühlerkurzschluss Eingang 1 oder 2 4 reserviert 5 Grenzwert 3 6 Grenzwert 4 Bemerkung: Die Driftüberwachung wird mit einer Differenzbildung realisiert. Es können nur Messgrössen mit der selben Einheit verknüpft werden.
40553	TON	REAL		0.0	Alarme Anstiegsverzögerung [s]: 060
40555	T0FF	REAL		0.0	Alarme Abfallverzögerung [s]: 060
40557	TONLIMITA	REAL		0.0	Grenzwerte 1,2: Anstiegsverzögerung [s]: 03600
40559	TOFFLIMITA	REAL		0.0	Grenzwerte 1,2: Abfallverzögerung [s]: 03600
40561	LIMIT10N	REAL		0.0	Einschalt-Schwelle Grenzwert 1, Einheit von LIMIT1
40563	LIMIT10FF	REAL		0.0	Ausschalt-Schwelle Grenzwert 1, Einheit von LIMIT1
40565	LIMIT20N	REAL		0.0	Einschalt-Schwelle Grenzwert 2, Einheit von LIMIT2
40567	LIMIT20FF	REAL		0.0	Ausschalt-Schwelle Grenzwert 2, Einheit von LIMIT2

Adresse	Bezeichnung	Datentyp	#	Default	Beschreibung		
40569	OUTSET1	UINT16		0001h	Ausgangs-Einstellungen Ausgang 1		
					Bit Beschreibung		
					0-1 Ausgangsbegrenzung 0: ±0 mA bzw. 0 V 1: ±1 mA bzw. 0.5 V 2: ±2 mA bzw. 1 V 3: -0,2/+0,5 mA bzw0,1/+0,25 V (z.B. 3,8 mA 20,5 mA) 2 Signalfluss 0: unterbrochen 1: aktiviert 3 Ausgangskonfiguration 0: Stromausgang		
					1: Spannungsausgang 4 Invertierung 0: normal, 1: invertiert 5 Tabelle 0: ohne, 1: mit Tabelle 6-7 Ausgang im Fehlerfall 0: PERCENTx, 1: ERRVALx bei Fehler Eingang 1 2: ERRVALx bei Fehler Eingang 2 3: ERRVALx bei Fehler Eingang 1 oder 2 8-15 Übertragungsfunktion 0: benutzerdefiniert 1: linear 2: Quadrierung 3: Volumen eines liegenden Zylinders		
40570	OUTRANGE1	REAL	Auso	 jangsbereich /	,		
			_		ameterkorrektur ²		
			0	20.0	Anfangswert		
40574	TRIM1	REAL	Auso	jangstrimmun	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			0	0.0	Offset-Trimmung [in % vom Ausgangsbereich, Einstellbereich +/- 10%] ¹		
			1	100.0	Gain-Trimmung [in % vom Ausgangsbereich, Einstellbereich 90110%] ¹		
40578	ERRVAL1	REAL		0.0	Ausgangswert Ausgang 1 im Fehlerfall [in % vom Ausgangsbereich, Einstellbereich -10+110%) ¹		
40580	OUTSET2	UINT16		001h	Ausgangs-Einstellungen Ausgang 2 (wie Ausgang 1)		
40581	OUTRANGE2	REAL	Auso	angsbereich <i>i</i>	Ausgang 2		
			0	4.0	Anfangswert		
40505	TDUMO	DEAL	1	20.0	Endwert		
40585	TRIM2	REAL	0	angstrimmun 0.0	offset-Trimmung [in % vom Ausgangsbereich, Einstellbereich +/– 10%] ¹		
			1	100.0	Gain-Trimmung [in % vom Ausgangsbereich, Einstellbereich 90110%] ¹		
40589	ERRVAL2	REAL		0.0	Ausgangswert Ausgang 2 im Fehlerfall [in % vom Ausgangsbereich, Einstellbereich -10+110%) ¹		
40591	GRAD_TIME	REAL		1.0	Zeitspanne zwischen zwei Messwerten für die Gradientenberechnung der Grenzwerte in Sekunden Bereich: 4 x TSET 26210 s Automatische Parameterkorrektur ²		
40593	NUMTAB	UINT8	Anza	hl Tabellenwe	rte		
0 0 Anzahl Tabellenwerte Tabelle 1 Automatische Parameterkorrektur ²		0	Anzahl Tabellenwerte Tabelle 1 Automatische Parameterkorrektur ²				
			1	0	Anzahl Tabellenwerte Tabelle 2 Automatische Parameterkorrektur ²		
40594	TAB1_YA	REAL		-10.0	Tabelle 1: Y-Wert (-10%) in % vom Messbereich		

Adresse	Bezeichnung	Datentyp	#	Default	Beschreibung		
40596	TAB1_X	REAL[20]		0.0	Tabelle 1: X-Werte in % vom Messbereich		
40636	TAB1_Y	REAL[20]		0.0	Tabelle 1: Y-Werte in % vom Messbereich		
40676	TAB1_YE	REAL		110.0	Tabelle 1: Y-Wert (110%) in % vom Messbereich		
40678	TAB2_YA	REAL		-10.0	Tabelle 1: Y-Wert (-10%) in % vom Messbereich		
40680	TAB2_X	REAL[20]		0.0	Tabelle 1: X-Werte in % vom Messbereich		
40720	TAB2_Y	REAL[20]		0.0	Tabelle 1: Y-Werte in % vom Messbereich		
40760	TAB2_YE	REAL		110.0	Tabelle 1: Y-Wert (110%) in % vom Messbereich		
40762	LIMITB	UINT8	Einst	tellung der Gre	zwerte		
			0	0	Messgrösse für den Grenzwert 3 Bit Beschreibung 0-4 Grenzwert: 0: nicht verwendet 1: Eingang 1 (INPUT1) 2: Eingang 2 (INPUT2) 3: Messgrösse Ausgang 1 (MEAS1) 4: Messgrösse Ausgang 2 (MEAS2) 5: Eingang 1 – Eingang 2 6: Eingang 2 – Eingang 1 6 Absolutwert der Messgrösse für den Grenzwert 7 1: Gradient dx/dt Bemerkung: die Driftüberwachung wird mit einer Differenzbildung realisiert. Es können nur Messgrössen mit derselben Einheit verknüpft werden.		
			1	0	Messgrösse für den Grenzwert 4 (wie Grenzwert 3)		
40763	ALARMSETB	UINT8	Rela 0	is und Alarm (I 00h	Relais 2, LED Relais 2		
					Bit Beschreibung Grenzwert 1 Grenzwert 2 Fühlerbruch Eingang 1 oder 2 Fühlerkurzschluss Eingang 1 oder 2 reserviert Grenzwert 3 Grenzwert 4 Invertiert Diese Einstellungen können alle miteinander kombiniert werden.		
40764	TONLIMITB	REAL		0.0	Grenzwerte 3, 4: Grenzwerte Anstiegsverzögerung [s] 03600		
40766	TOFFLIMITB	REAL		0.0	Grenzwerte 3, 4: Grenzwerte Abfallverzögerung [s] 03600		
40768	LIMIT30N	REAL		0.0	Einschalt-Schwelle Grenzwert 3, Einheit von LIMIT3		
40770	LIMIT30FF	REAL		0.0	Ausschalt-Schwelle Grenzwert 3, Einheit von LIMIT3		
40772	LIMIT40N	REAL		0.0	Einschalt-Schwelle Grenzwert 4, Einheit von LIMIT4		
40774	LIMIT40FF	REAL		0.0	Ausschalt-Schwelle Grenzwert 4, Einheit von LIMIT4		
40776	0FFSET1	REAL		0.0	Offsetwert für INPUT1, gleiche Einheit wie INPUT1		
40778	MEASRANGE1	REAL			h für Ausgang 1 biglichen Messgrössenbereich Messgrössenbereichs-Anfang [%] Messgrössenbereichs-Ende [%] - Bedingung: Anfang < Ende		
40782	0FFSET2	REAL		0.0	Offsetwert für INPUT2, gleiche Einheit wie INPUT2		
40784	MEASRANGE2	REAL		sgrössenberei	ch für Ausgang 2 iglichen Messgrössenbereich Messgrössenbereichs-Anfang [%]		
			1	100.0	Messgrössenbereichs-Anfang [76] Messgrössenbereichs-Ende [%] - Bedingung: Anfang < Ende		
40788 bis 40792	Reserviert				Reserviert		

 $^{^{1}\,}$ max. +/-22 mA bzw. +/-11 V

Automatische Korrektur der Parameter im Gerät.

Jeder Parameter muss sich innerhalb der erlaubten Grenzen befinden. Diese sind zum Teil abhängig von anderen Parametern.

Werden Parameter geändert, welche bestimmend sind für die Grenzen von abhängigen Parametern

(z.B. Messbereich ist abhängig von der Messart), so werden die entsprechenden Parameter automatisch auf die erlaubten Parameter limitiert. Falls eine solche Korrektur stattgefunden hat, wird dies im Status angezeigt.

Einschränkungen der Konfigurationsparameter

Kombinationsmöglichkeiten der Messarten

Register: 40523, 40534

Die zahlreichen Messarten können auf unterschiedliche Weise miteinander kombiniert werden.

Siehe Tabelle 3, Seite 21

Die Kombination "geerdet" wird dann verwendet, wenn die beiden Fühler miteinander verbunden sind.

Messgrössen-Bereiche

Aufgrund von Verknüpfungen (Register MATRIX), Skalierungen (Register SCALE1, 2) und Offset (OFFSET1, 2) wird aus den Messbereichen (Register INPRANGE1, 2) der grösstmögliche Messgrössen-Bereich berechnet. Dies geschieht automatisch im Gerät.

Der eingestellte Messgrössen-Bereich (Register MEASRAN-GE1, 2), welcher innerhalb des berechneten Messgrössenbereichs liegen muss (Zoom-Funktion), wird dann auf den analogen Ausgangsbereich abgebildet.

Die Tabellenwerte (Register TAB1..., TAB2...) beziehen sich auf den eingestellten Messgrössen-Bereich.

Abkürzungen:

k1: SCALE1 $T_{1a}...T_{1e}$: INPRANGE1 k2: SCALE2 $T_{2a}...T_{2e}$: INPRANGE2

MRmin...MRmax: berechneter, grösstmöglicher Messgrössen-Bereich

bei k1>=0: Min1 = $(T_{1a} + OFFSET1) \times k_1 Max1 = (T_{1e} + OFFSET1) \times k_1$ bei k2>=0: Min2 = $(T_{2a} + OFFSET2) \times k_2 Max2 = (T_{2e} + OFFSET2) \times k_2$ bei k1<0: Min1 = $(T_{1e} + OFFSET1) \times k_1 Max1 = (T_{1a} + OFFSET1) \times k_1$

bei k2<0: Min2 = $(T_{2a} + OFFSET2) \times k_2 Max2 = (T_{2a} + OFFSET2) \times k_2 Max2$

 Matrix
 Messgrössenbereich

 Verknüpfung der Eingänge mit den Ausgängen
 Anfangswert MRmin
 Endwert MRmax

 Eingang 1
 Min1
 Max1

 Eingang 2
 Min2
 Max2

 Eingang 1 + 2
 Min1 + Min2
 Max1 + Max2

 Eingang 1 - 2
 Min1 - Max2
 Max1 - Min2

 Eingang 2 - 1
 Min2 - Max1
 Max2 - Min1

ſ	Eingang	1 * 2						
	Einga	ang 1	Eingang 2					
	Min1	Max1	Min2	Max2				
	≥0	>0	≥0	>0		Min1 * Min2		Max1 * Max2
	<0	≤0	≥0	>0		Min1 * Max2		Max1 * Min2
	<0	>0	≥0	>0		Min1 * Max2		Max1 * Max2
	≥0	>0	<0	≤0		Min2 * Max1		Min1 * Max2
	<0	≤0	<0	≤0		Max1 * Max2		Min1 * Min2
	>0	>0	<0	≤0		Max1 * Min2		Min1 * Min2
	≥0	>0	<0	>0		Max1 * Min2		Max1 * Max2
	<0	≤0	<0	>0		Min1 * Max2		Min1 * Min2
	<0	>0	<0	>0		Min (Min1 * Max2,		Max (Min1 * Min2,
						Min2 * Max1)		Max1 * Max2)
ŀ	Minimalwork (Finness 1 0)			+	Min (Mind MinO)		Ain (Mayd MayO)	
L	Minimalwert (Eingang 1, 2)					Min (Min1, Min2)	I,	Min (Max1, Max2)
	Maximalwert (Eingang 1, 2)					Max (Min1, Min2)	١	Max (Max1, Max2)

(Min1 + Min2)/2

Min1 1

Min2 1

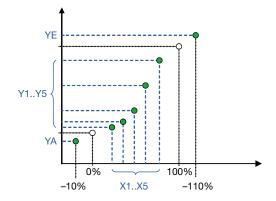
Sensor-Backup Minimalwert (Eingang 1, 2)	Min1 1	Max2 ¹
Sensor-Backup Maximalwert (Eingang 1, 2)	Min1 ¹	Max2 ¹
Sensor-Backup Mittelwert (Eingang 1, 2)	Min1 ¹	Max2 ¹

 $^{^{1}}$ $k_{1} = k_{2}$, $T_{1a} = T_{2a}$, $T_{1e} = T_{2e}$

Matrix= Absolutwert der Messgrösse -> Die zuvor berechneten Werte (MRmin, MRmax) werden nochmals umskaliert:

Matrix	Messgrössenbereich			
	Anfangswert MRmin	Endwert MRmax		
Absolutwert der Messgrösse				
bei MRmin, MRmax >= 0	MRmin	MRmax		
bei MRmin < 0, MRmax >= 0	0	Max(IMRminl,IMRmaxl)		
bei MRmin, MRmax < 0	IMRmaxi	IMRminl		

Einstellzeit


Register: 40547

Die minimale Einstellzeit hängt davon ab, ob beide Eingänge konfiguriert sind, von den Messarten, von Bruch- und Kurzschluss-Ueberwachung.

Für einen Eingang ergeben sich folgende minimalen Einstellzeiten:

Messart	Minimale Einstellzeit [ms]	Bruch- Überwachung	Kurzschluss- Überwachung
Spannung [mV]	315	Х	_
Spannung [V]	160	_	_
Strom [mA]	160	_	_
Widerstand [Ω] 2L	280	Х	Х
Widerstand [Ω] 3L, WF, WF_DIN	595	Х	Х
Widerstand [Ω] 4L	435	Х	Х
Thermoelement int. Komp.	475	Х	-

Linearisierungstabellen

Die in den Registern OUTSET1 bzw. OUTSET2 gespeicherten Übertragungsfunktionen sind Informationen für die PC-Software, um die gewünschte Übertragungsfunktion mit den Tabellenwerten zu generieren. Für das Gerät ist diese Information bedeutungslos.

Kennlinien:

- benutzerdefiniert, linear, quadratisch
- Volumen eines liegenden Zylinders:

$$y = \frac{1}{\pi} \bullet \left[a\cos(1 - 2x) - 2 \bullet \sqrt{x - x^2} \bullet (1 - 2x) \right] (h/2r = x = 0..1, y = 0..1)$$

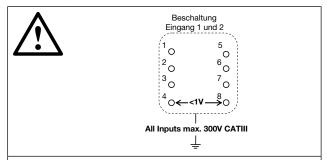
Mittelwert (Eingang 1, 2)

Sensor-Backup Eingang 1

Sensor-Backup Eingang 2

(Max1 + Max2)/2

Max1 1


Max2 1

7. Elektrische Anschlüsse

	Kreis	Klemmen	Bemerkung
	Messeingang	1 bis 8	siehe Tabelle 2, Seite 20/21
1 2 3 4 5 6 7 8	Ausgang 1	9 (+), 13 (–)	
CWILLE BUILD ON GERR 1	Relaiskontakt Relais 1 Relais 2		Im spannungs- losen Zustand sind nc und com verbunden
9 10 11 12 13 14 15 16 17 18	Hilfsenergie	17 (+/~) 18 (- /~)	Bei DC Polari- tät beachten
<u> </u>	Bus-/ Programmier- anschluss	+, -, GND	Frontstecker

Beschaltung mit 2 Eingangs-Sensoren

Bei der Verwendung von 2 Eingangs-Sensoren oder Eingangsgrössen Kombinationsmöglichkeiten in Tabelle 3 beachten!

Bei Verwendung von 2 Eingangs-Sensoren oder Eingangs-Grössen müssen diese grundsätzlich gegeneinander potentialfrei bzw. galvanisch getrennt sein! Andernfalls kann der Messumformer beschädigt werden. Ausnahmen:

- Bei einer erlaubten Eingangs-Kombination¹ mit gemeinsamen (und zulässigen) Anschlüssen an Klemme 4.
- Z.B. Gleichspannung mV (Klemme 3, 4) & Gleichspannung V (Klemme 6, 4)
- Bei einer erlaubten Eingangs-Kombination¹ mit gleichem Bezugs-Potential (z.B. Erde) an Klemme 4 und 8
 - Z.B. 2 Thermoelemente (an Klemmen 3, 4 bzw. 7, 8) mit geerdeten Fühlerspitzen oder zwei mV-Eingänge mit gemeinsamen Erdpotential an Klemmen 4 und 8. In diesen Fällen müssen die vorgesehenen Messarten für geedete Fühler konfiguriert werden.

Tabelle 2: Anschluss der Eingänge

Managet	Beschaltung						
Messart	Eingang 1	Eing. 2					
Gleichspannung mV	+ 3 0 U [mV] 4 0	<u>7</u> 0					
Thermoelement mit externem Vergleichs- stellenthermostat oder intern kompensiert	+ 30	<u>7</u> 0					
Thermoelement mit Pt100 an den Klemmen am selben Eingang	Pt100	² O ⁷ O					
Thermoelement mit Pt100 an den Klemmen am ande- ren Eingang	Pt100 8 0 + 3 0	<u>4</u> 0 <u>7</u> 0					
Widerstands- thermometer oder Widerstands- Messung 2-Leiter	1 O RTD, R	<u>2</u> 0					
Widerstands- thermometer oder Widerstands- Messung 3-Leiter	1 O RTD, R 3 O	<u>2</u>					
Widerstands- thermometer oder Widerstands- Messung 4-Leiter	100 RTD, R 3040						

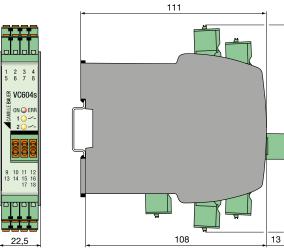
¹ siehe Tabelle 3 "Kombinationsmöglichkeiten der Messarten" Seite 21

Messart	Beschaltung					
Wiessart	Eingang 1	Eing. 2				
	Ra 0%	2				
Widerstands- Ferngeber WF	Re 300%	<u>7</u>				
	4	<u>8</u> O				
	10	<u> </u>				
Widerstands- Ferngeber WF-DIN	Ra 0% 3	 7				
	Re 4	<u>8</u> O				
Gleichspannung V (nur bei entsprechen-	+ 6					
der Geräteausfüh- rung)	U [M]					
Gleichstrom mA (Eingang 2 nur bei	+ 5	<u>6</u>				
entsprechender Geräteausführung)	I [mA]	4				

Tabelle 3: Kombinationsmöglichkeiten der Messarten

	Ein- gang 2 Messart	U [mV]		U [V] 1	I [mA] 1	TC ext. geerdet	TC int. geerdet		R 2L	R 3L	RTD 2L	RTD 3L	I [mA] 2
Eingang 1 Messart	Klemmen	7,	8	6,4	5,4	7,8	7,8	2,7,8	2,8	2,7,8	2,8	2,7,8	6,4
U [mV]	3,4	1		1	1	1	1	1	V	1	1	1	1
geerdet			$\sqrt{}$			√	√						
U [V] 1	6,4	1			1	√	√	V	1	√	1	1	
I [mA]	5,4	√		J		√	V	V	1	J	1	1	J
TC ext.	3,4	1		1	1	1	1	1	1	1	1	1	1
geerdet			$\sqrt{}$			√	√						
TC int.	3,4	1		1	1	1	1	1	1	1	1	1	1
geerdet			$\sqrt{}$			√	√						
	1,3,4	1				1		V	1	1	1	1	
R 2L	1,4	1				1		1	1	1	1	1	
R 3L	1,3,4	1				1		1	1	1	1	1	
R 4L	1,2,3,4	1				1							
RTD 2L	1,4	1				1		1	1	1	1	1	
RTD 3L	1,3,4	1				1		V	V	1	1	1	
WF	1,3,4	1				1		1	1	1	1	1	
WF_DIN	1,3,4	1				1		V	1	1	1	1	
RTD 4L	1,2,3,4	1				1							

- 1 Nur bei Geräteausführung 1x Gleichstrom [mA] und 1x hohe Gleichspannung [V] wählbar
- 2 Nur bei Geräteausführung 2x Gleichstrom [mA] wählbar


8. Mass-Skizze

Mit Schraubklemmen 111 0000 0000 ≝ VC604s ON 🔾 ERF 89 0000 0000

108

22,5

9. Zubehör

USB-RS485 Konverter (zum Programmieren des SINEAX VC604s): Artikel-Nr. 163189

123

10. Konformitätsbescheinigung

Dokument-Nr./ Document.No.: PM 1000774

Hersteller/ Manufacturer:

Camille Bauer Metrawatt AG

Switzerland

Anschrift / Address:

Aargauerstrasse 7 CH-5610 Wohlen

Produktbezeichnung/

Programmierbarer multifunktionaler Messumformer

Product name:

Programmable multifunctional transmitter

Typ / Type:

SINEAX VC604s

Das bezeichnete Produkt stimmt mit den Vorschriften folgender Europäischer Richtlinien

überein, nachgewiesen durch die Einhaltung folgender Normen:

The above mentioned product has been manufactured according to the regulations of the following European directives proven through compliance with the following standards:

Richtlinie /	2014/30/EU			
Directive	EMV-Richtlinie / EMC directive			
Norm /	EN 61000-6-2:2005+Cor. 2005-09			
Standard	Fachgrundnormen - Störfestigkeit für Industriebereiche			
	Generic standards - Immunity for industrial environments			
	EN 61000-6-4:2007+A1:2011			
	Fachgrundnormen - Störaussendung für Industriebereiche			
	Generic standards - Emission standard for industrial environments			

Richtlinie / Directive	2014/35/EU Niederspannungsrichtlinie - CE-Kennzeichnung : 95 Low Voltage Directive - Attachment of CE marking : 95
Norm / Standard	EN 61010-1:2010 Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte – Teil 1: Allgemeine Anforderungen Safety requirements for electrical equipment for measurement, control and laboratory use – Part 1: General requirements EN 61010-2-030:2010 Besondere Bestimmungen für Prüf- und Messstromkreise Particular requirements for testing and measuring circuits

Ort, Datum / Place, date: Unterschrift / signature:

Wohlen, 02. September 2016

M. Ulrich Leiter Technik / Head of engineering J. Brem Qualitäts,manager / Quality manager