Geräte-Handbuch LINAX PQ5000-RACK

Betriebsanleitung (2025-05)

GMC INSTRUMENTS

Camille Bauer Metrawatt AG Aargauerstrasse 7 CH-5610 Wohlen / Schweiz

Telefon: +41 56 618 21 11 Telefax: +41 56 618 35 35

E-Mail: info@cbmag.com https://www.camillebauer.com

Rechtliche Hinweise

Warnhinweise

In diesem Dokument werden Warnhinweise verwendet, welche zur persönlichen Sicherheit und zur Vermeidung von Sachschäden befolgt werden müssen. Je nach Gefährdungsstufe werden folgende Symbole verwendet:

Ein Nichtbeachten führt zu Tod oder schwerer Körperverletzung.

Ein Nichtbeachten kann zu Sach- oder Personenschäden führen.

Ein Nichtbeachten **kann** dazu führen, dass das Gerät nicht die erwartete Funktionalität erfüllt oder beschädigt wird.

Wenn die Richtlinien für die Cybersicherheit nicht befolgt werden, **können** Daten an nicht autorisierte Benutzer weitergegeben, manipuliert oder durch Cybersicherheitsbedrohungen in ihrer Verfügbarkeit eingeschränkt werden.

Qualifiziertes Personal

Das in diesem Dokument beschriebene Produkt darf nur von Personal gehandhabt werden, welches für die jeweilige Aufgabenstellung qualifiziert ist. Qualifiziertes Personal hat die Ausbildung und Erfahrung um Risiken und Gefährdungen im Umgang mit dem Produkt erkennen zu können. Es ist in der Lage die enthaltenen Sicherheits- und Warnhinweise zu verstehen und zu befolgen.

Bestimmungsgemässer Gebrauch

Das in diesem Dokument beschriebene Produkt darf nur für den von uns beschriebenen Anwendungszweck eingesetzt werden. Die in den technischen Daten angegebenen maximalen Anschlusswerte und zulässigen Umgebungsbedingungen müssen dabei eingehalten werden. Für den einwandfreien und sicheren Betrieb des Gerätes wird sachgemässer Transport und Lagerung sowie fachgerechte Lagerung, Montage, Installation, Bedienung und Wartung vorausgesetzt.

Haftungsausschluss

Der Inhalt dieses Dokuments wurde auf Korrektheit geprüft. Es kann trotzdem Fehler oder Abweichungen enthalten, so dass wir für die Vollständigkeit und Korrektheit keine Gewähr übernehmen. Dies gilt insbesondere auch für verschiedene Sprachversionen dieses Dokuments. Dieses Dokument wird laufend überprüft und ergänzt. Erforderliche Korrekturen werden in nachfolgende Versionen übernommen und sind via unsere Homepage https://www.camillebauer.com verfügbar.

Rückmeldung

Falls Sie Fehler in diesem Dokument feststellen oder erforderliche Informationen nicht vorhanden sind, melden Sie dies bitte via E-Mail an:

customer-support@camillebauer.com

<u>Inhaltsverzeichnis</u>

1.	Ein	nleitung	
	1.1	Bestimmung des Dokuments	5
	1.2	Lieferumfang	5
	1.3	Weitere Unterlagen	5
2.	Sic	cherheits- und Cyber Security Hinweise	6
	2.1	Sicherheitshinweise	6
	2.2	Cyber Security Hinweise	6
3.	Ge	räte-Übersicht	7
	3.1	Kurzbeschreibung	7
	3.2	Geräteübersicht	8
	3.3	Verfügbare Messdaten	9
4.	Me	chanischer Einbau	.10
5.	Ele	ektrische Anschlüsse	.11
	5.1	Allgemeine Warnhinweise	.11
	5.2	Mögliche Leiterquerschnitte und Drehmomente	.12
	5.3	Hilfsenergie	.12
	5.4	Eingänge	.12
	5.5	Digitale Eingänge	.20
	5.6	Digitalausgang	.20
	5.7	Analoge Ausgänge	.20
	5.8	Modbus-Schnittstelle RS485	.21
	5.9	Unterbrechungsfreie Stromversorgung (USV)	.21
	5.10	GPS-Zeitsynchronisation	.22
	5.11	IRIG-B Zeitsynchronisation	.23
6.	Inb	petriebnahme	.24
	6.1	Cyber Security Richtlinien	.24
	6.2	Parametrierung der Gerätefunktionen	.25
	6.3	Überprüfen der Installation	.25
	6.4	Ethernet-Installation	.27
	6.	.4.1 Einstellungen	.27
	6.	.4.2 Anschluss der Standard-Schnittstelle	
	6.	4.3 Anschluss der IEC61850-Schnittstelle	.30
	6.	.4.4 MAC-Adressen	.30
	6.5	Kommunikationstests	.30
	6.6	3G/4G Router	.31
	6.7	IEC 61850-Schnittstelle	.31
		Simulation von analogen / digitalen Ausgängen	
	6.9	Sicherheitssystem	
		.9.1 RBAC-Management	
	6.	9.2 An- und abmelden eines Benutzers via Webseite	
	6.	9.3 An- und abmelden eines Benutzers via lokale Anzeige	
	_	9.4 Client Whitelist	
	6.	9.5 Sichere Kommunikation mit HTTPS	
		9.6 Audit log (SYSLOG)	
7.		dienen des Gerätes	
	7.1		
		Auswahl der anzuzeigenden Information	
		Messwertanzeigen und verwendete Symbole	
		Rücksetzen von Messdaten	
		Konfiguration	
	7.	.5.1 Lokale Konfiguration am Gerät	.44

		Konfiguration via Webbrowser	
7.	6 PQ	-Überwachung	48
	7.6.1	PQ-Ereignisse	48
	7.6.2	PQ-Statistik	50
	7.6.3	Bereitstellung von PQ-Daten	51
7.	7 Ala	rmierung	52
	7.7.1	Grenzwerte auf Basismessgrössen	52
	7.7.2	Überwachungsfunktionen	53
	7.7.3	Sammelalarm	54
7.	8 Dat	enaufzeichnung	55
	7.8.1	Periodische Daten	55
	7.8.2	Ereignisse	58
	7.8.3	PQ-Ereignisse	59
	7.8.4	PQ-Statistik	62
7.	9 Mes	sswert-Informationen in Dateiform	66
	7.9.1	Vordefinierte Aufgaben	66
	7.9.2	Periodische Datei-Informationen erzeugen	68
	7.9.3	Zugriff auf Dateien-Informationen via Webseite	
	7.9.4	PQIS-Dateien herunterladen	70
	7.9.5	Periodisches Versenden an einen SFTP-Server	71
	7.9.6	Auswertung der PQDIF-Dateien	72
7.	10 An	zeige-Timeouts	72
8. I	nstand	dhaltung, Wartung und Entsorgung	73
8.	1 Kali	bration und Neuabgleich	73
8.	2 Rei	nigung	73
8.	3 Bat	terie	73
8.	4 Cyk	per Security Ausserbetriebnahme	73
8.	5 Ent	sorgung	73
9. 1	Гесhni	sche Daten	74
10. N	Massz	eichnung	80
۸nh	ana		04
	_	reibung der Messgrössen	
A		ınd-Messgrössen	
A		erschwingungs-Analyse	
A		z-Unsymmetrie	
A ²		elwerte und Trend	
A!		iler	
		e-Matrizen	
B	_	wendete Kurzbezeichnungen der Messgrössen	
B ²		reige-Matrizen Einphasennetz	
B		reige-Matrizen Split-phase (Zweiphasen-Netz)	
B3		reige-Matrizen Dreiphasennetz gleichbelastet	
B ₄		reige-Matrizen Dreiphasennetz ungleichbelastetreige-Matrizen Dreiphasennetz ungleichbelastet	
B!		reige-Matrizen Dreiphasennetz ungleichbelastet, Aron	
B(reige-Matrizen Vierleiternetz ungleichbelastet	
		unktionen	
	_	atement	
		dienieni	102 103

1. Einleitung

1.1 Bestimmung des Dokuments

Dieses Dokument beschreibt das universelle Messgerät für Starkstromgrössen LINAX PQ5000. Es richtet sich an:

- Installateure und Inbetriebsetzer
- · Service- und Wartungspersonal
- Planer

Gültigkeitsbereich

Dieses Handbuch ist für alle Hardware-Varianten der Rackausführung des PQ5000 gültig. Gewisse in diesem Handbuch beschriebene Funktionen sind nur verfügbar, falls die dazu erforderlichen optionalen Komponenten im Gerät enthalten sind.

Vorkenntnisse

Allgemeine Kenntnisse der Elektrotechnik sind erforderlich. Für Montage und Anschluss wird die Kenntnis der landesüblichen Sicherheitsbestimmungen und Installationsnormen vorausgesetzt.

1.2 Lieferumfang

- Messgerät
- Quick installation and set-up guide
- Akku (optional, nur bei Geräten mit USV)

1.3 Weitere Unterlagen

Dieses Dokument ist über die Geräte-Webseite im Menü **Service | Geräte-Information | Betriebsanleitung herunterladen** verfügbar. Weitere Dokumente zu diesem Gerät können über unsere Homepage https://www.camillebauer.com heruntergeladen werden.

2. Sicherheits- und Cyber Security Hinweise

2.1 Sicherheitshinweise

Geräte dürfen nur fachgerecht entsorgt werden!

Installation und Inbetriebnahme dürfen nur durch geschultes Personal erfolgen.

Überprüfen Sie vor der Inbetriebnahme, dass:

- die maximalen Werte aller Anschlüsse nicht überschritten werden, siehe Kapitel "Technische Daten",
- die Anschlussleitungen nicht beschädigt und bei der Verdrahtung spannungsfrei sind
- Energierichtung und Phasenfolge stimmen.

Das Gerät muss ausser Betrieb gesetzt werden, wenn ein gefahrloser Betrieb (z.B. sichtbare Beschädigungen) nicht mehr möglich ist. Dabei sind alle Anschlüsse abzuschalten. Das Gerät ist an unser Werk bzw. an eine durch uns autorisierte Servicestelle zu schicken.

Ein Öffnen des Gehäuses bzw. Eingriff in das Gerät ist verboten. Das Gerät hat keinen eigenen Netzschalter. Achten Sie darauf, dass beim Einbau ein gekennzeichneter Schalter in der Installation vorhanden ist und dieser vom Benutzer leicht erreicht werden kann.

Bei einem Eingriff in das Gerät erlischt der Garantieanspruch.

2.2 Cyber Security Hinweise

Dieses Gerät kann Daten aufzeichnen (Messdaten, Ereignisse, Protokollierung von Betriebsvorgängen usw.). Diese Daten können ein schützenswertes Gut darstellen und müssen vor Offenlegung und Veränderung geschützt werden, und ihre Verfügbarkeit muss gewährleistet sein. Um grösstmögliche Sicherheit in Bezug auf Cybersicherheitsbedrohungen zu erreichen, muss Folgendes beachtet werden:

Sicherheitsrelevante Einstellungen müssen bei der Inbetriebnahme vorgenommen werden. Siehe die Richtlinien in

Kapitel 6.1 Cyber Security Richtlinien

Die Gerätesoftware muss während des Betriebs auf dem aktuellen Stand gehalten werden. Softwareupdates werden auf der Website des Herstellers veröffentlicht.

Bei Ausserbetriebnahme des Gerätes müssen sicherheitsrelevante Massnahmen durchgeführt werden. Siehe

Kapitel 8.4 Cyber Security Ausserbetriebnahme

3. Geräte-Übersicht

3.1 Kurzbeschreibung

Die Geräte der LINAX PQ5000-Reihe sind Kompaktgeräte für die Messung und Überwachung in Starkstrom-Netzen. Sie stellen eine breite Funktionalität zur Verfügung, welche sich mit optionalen Komponenten noch weiter ausbauen lässt. Das auf dem Gerät angebrachte Typenschild gibt Auskunft über die jeweils vorliegende Variante. Die Anbindung des Prozess-Umfelds kann mit Hilfe von Kommunikations-Schnittstellen, über digitale I/Os, Analogausgänge oder Relais vorgenommen werden. Die Parametrierung der Geräte-Funktionen kann direkt am Gerät oder über einen Webbrowser vorgenommen werden.

Der PQ5000 ist ein metrologisch unabhängig zertifiziertes Gerät der Klasse A nach IEC 61000-4-30 Ed. 3. Es liefert verlässliche und vergleichbare Informationen für Regulierungsbehörden, Verhandlungen mit Energielieferanten oder die interne Qualitätskontrolle.

Mit Hilfe einer kontinuierlichen Überwachung können Störfälle unmittelbar analysiert und deren Ursachen nachhaltig behoben werden. Zudem erlauben Langzeiterfassungen Veränderungen frühzeitig zu erkennen, um die Versorgungssicherheit und somit die Systemverfügbarkeit zu verbessern.

Der flexible und softwarelose Ansatz überzeugt sowohl durch Autarkie, als auch durch flexible Einbindungsmöglichkeiten in Software-Systeme. Er baut auf standardisierten Schnittstellen auf, kann Konformitätsberichte direkt über die Webseite des Gerätes erzeugen und stellt ein umfassendes Cyber-Security Konzept bereit.

3.2 Geräteübersicht

	PQ5000R-2	PQ5000R-3
Spannungseingänge Eingangskanäle Strom Funktionsklasse nach IEC 61000-4-30 Gerätetyp nach IEC 62586-1	5 4 (5 A oder 3 V) Klasse A PQI-A FI1	2 x 5 2 x 4 (5 A oder 3 V) Klasse A PQI-A FI1
PQ-KONFORMITÄTSÜBERWACHUNG		
Netzfrequenz Spannungs- / Stromänderungen	÷	
Unsymmetrie Spannung / Strom THDS der Netzspannungen	·	:
Harmonische Spannung / Strom		
Flicker Pst / Plt Signalübertragungs-Spannungen		
Interharmonische Spannung / Strom	•	
PQ-EREIGNISAUFZEICHNUNG Spannungseinbruch		_
Spannungsunterbruch		•
Spannungsüberhöhung Schnelle Spannungsänderung (RVC)	·	
Homopolare Spannung (Unsymmetrie)	•	•
Stromüberhöhung Frequenz-Anomalie	:	
Rundsteuersequenzen Statusänderung von Digitaleingängen	· ·	:
MESS-UNSICHERHEIT		
Spannung, Strom Wirk-, Blind-, Scheinleistung	±0,1% ±0,2%	±0,1% ±0,2%
Wirkenergie (IEC 62053-22)	Klasse 0.2S	Klasse 0.2S
KOMMUNIKATION	(Chandard)	(Chandard)
Ethernet: Modbus/TCP, Webserver, NTP IEC 61850	(Standard) (Option)	(Standard) –
RS485: Modbus/RTU	(Option)	(Option)
Erweiterungsmodule (optional)	4 Analogausgänge, 12 Digitaleingänge, 1 Relais	2 x 4 Analogausgänge, 2 x 12 Digitaleingänge, 2 x 1 Relais
HILFSENERGIE	100-230V AC/DC	100-230V AC/DC
Leistungsaufnahme	≤40 VA	≤60 VA
AUFBAU Forthdisplay	TET 2 5" (000, 040)	0 v TFT 0 E# (000, 040)
Farbdisplay Abmessungen	TFT 3,5" (320x240px) 482,6 x 132,6 x 270,1 mm	2 x TFT 3,5" (320x240px) 482,6 x 132,6 x 270,1 mm
Montage	Einbau in 19"-Rack	Einbau in 19"-Rack

3.3 Verfügbare Messdaten

MESSWERT-GRUPPE

MOMENTANWERTE

Nebst den PQ-Messwerten gemäss der Übersicht in Kapitel 3.2 stellt das Gerät folgende Messdaten zur Vefügung.

ANWENDUNG

U, I, IMS, P, Q, S, PF, LF, QF Winkel zwischen den Spannungsvektoren Min/Max der Momentanwerte mit Zeitstempel	 » Transparente Überwachung des aktuellen Netzzustands » Fehlererkennung, Anschlusskontrolle, Drehrichtungskontrolle » Ermitteln der Varianz der Netzgrössen mit Zeitreferenz
ERWEITERTE BLINDLEISTUNGSANALYSE Blindleistung Gesamt, Grundschwingung, Oberschwingungen cosφ, tanφ der Grundschwingung mit Min-Werten aller Quadranten	» Blindleistungs-Kompensation» Überprüfen eines vorgegebenen Leistungsfaktors
OBERSCHWINGUNGS-ANALYSE (NACH IEC 61000-4-7) Gesamt-Oberschwingungsgehalt THD U/I und TDD I Individuelle Oberschwingungen U/I Interharmonische U/I (nur P3000, PQ5000)	 » Bewertung der thermischen Belastung von Betriebsmitteln » Analyse von Netzrückwirkungen und der Verbraucherstruktur » Analyse nicht-harmonischer Störfrequenzen
UNSYMMETRIE-ANALYSE Symmetrische Komponenten (Mit-, Gegen-, Nullsystem) Unsymmetrie (aus symmetrischen Komponenten bestimmt) Abweichung vom U/I-Mittelwert	» Schutz von Betriebsmitteln vor Überlast » Fehler-/Erdschlusserkennung
ENERGIEBILANZ-ANALYSE Zähler für Bezug/Abgabe von Wirk-/Blindenergie, Hoch-/Niedertarif, Zähler mit wählbarer Basisgrösse Leistungsmittelwerte Wirk-/Blindleistung, Bezug und Abgabe, frei definierbare Mittelwerte (z.B. für Phasenleistungen, Spannung, Strom uvm.) Mittelwert-Trends	 » Erstellen (interner) Energie-Abrechnungen » Ermittlung des Energieverbrauchs über die Zeit (Lastgang) für das Energiemanagement oder Energieeffizienz-Überprüfungen » Energieverbrauchs-Trendanalyse für das Lastmanagement
BETRIEBSSTUNDEN 3 Betriebsstundenzähler mit programmierbarer Laufbedingung	» Service- und Wartungsintervalle von Betriebsmitteln überwachen

Auf die Messdaten kann über das Web-Interface und über das lokale Display des Gerätes in den folgenden Untergruppen zugegriffen werden:

- a) Momentanwerte: Aktuelle TRMS-Werte sowie zugehörige Min/Max-Werte
- b) **Energie**: Mittelwerte mit Historie und Trend sowie Energiezähler. Es sind auch Mittelwertverläufe (Lastprofile) und periodische Zählerablesungen verfügbar.
- c) **Oberwellen**: Gesamtoberschwingungsgehalt THD/TDD, individuelle Oberwellen und deren Maximalwerte, Phasenwinkel der Oberschwingungen
- d) **Vektordiagramm**: Übersicht aller Strom- / Spannungsvektoren und Überprüfung der Drehrichtung
- e) Kurvenform der Strom- und Spannungseingänge
- f) **Ereignisse**: Zeitlich geordnete Listen für PQ-Ereignisse und selbstdefinierte Ereignisse / Alarme. Zustandsliste überwachter Alarme
- g) **PQ-Statistik**: Daten der statistischen Netzqualitätsanalyse mit der Möglichkeit PQ-Berichte zu erzeugen (PQ-Easy Report).

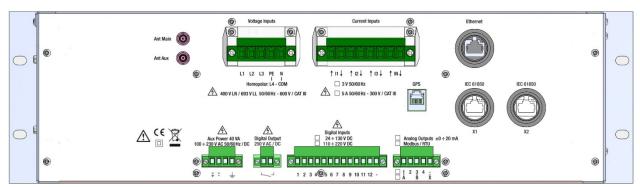
4. Mechanischer Einbau

Bei der Festlegung des Montageortes ist zu beachten, dass die <u>Grenzen der</u> Betriebstemperatur nicht überschritten werden.

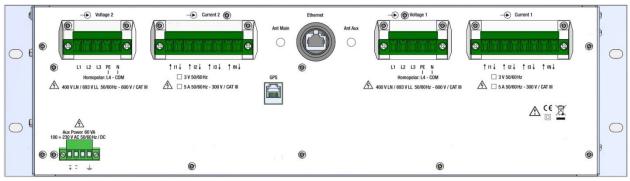
Mit der Installation wird das Gerät Teil einer Starkstromeinrichtung, welche nach länderspezifischen Vorschriften so erstellt, betrieben und unterhalten werden muss, dass die Installation sicher ist und Brände und Explosionen so weit als möglich verhindert werden.

Es ist Aufgabe dieser Starkstromeinrichtung sicherzustellen, dass gefährliche Anschlüsse des Gerätes während des Betriebs nicht berührt werden können und der Ausbreitung von Flammen, Hitze und Rauch aus dem Innern der Starkstromeinrichtung vorgebeugt wird. Dies kann durch Bereitstellung einer Umhüllung (z.B. Gehäuse, Schaltschrank) geschehen oder die Nutzung eines Raumes, der nur für qualifiziertes Personal zugänglich ist und den lokalen Brandschutznormen entspricht.

5. Elektrische Anschlüsse


Unbedingt sicherstellen, dass die Leitungen beim Anschliessen spannungsfrei sind!

5.1 Allgemeine Warnhinweise



Es ist zu beachten, dass die bei den Anschlüssen angegebenen Daten eingehalten werden!

Es sind die landesüblichen Vorschriften bei der Installation und Auswahl des Materials der elektrischen Leitungen zu befolgen, z.B. in Deutschland VDE 0100 "Errichten von Starkstromanlagen mit Nennspannungen bis 1000 V "!

Rückwand, Single-Rack, mit I/O-Erweiterung, Antennenanschlüssen für 3G/4G-Router und IEC61850-Schnittstelle

Rückwand, Double-Rack, ohne I/O-Erweiterung und Antennenanschlüsse für 3G/4G-Router

Symbol	Bedeutung
Z	Geräte dürfen nur fachgerecht entsorgt werden
	Doppelte Isolierung, Gerät der Schutzklasse 2
CE	CE-Konformitätszeichen. Das Gerät erfüllt die Bedingungen der zutreffenden EU- Richtlinien.
Ŵ	Achtung! Allgemeine Gefahrenstelle. Betriebsanleitung beachten.
Ą	Warnung, Möglichkeit eines elektrischen Schlags
CAT III	Messkategorie CAT III
Ī	Erdanschluss

5.2 Mögliche Leiterquerschnitte und Drehmomente

Eingänge L1, L2, L3, PE(L4), N(COM), I1, I2, I3, IN			
Eindrähtig	 1 x 0.2 ÷ 4.0mm² oder 2 x 0.2 ÷ 2.5mm² 1 x 24 AWG ÷ 11 AWG oder 2 x 24 AWG ÷ 14 AWG 		
Feindrähtig mit Adern-Endhülse	 1 x 0.2 ÷ 4.0mm² oder 2 x 0.2 ÷ 2.5mm² 1 x 24 AWG ÷ 11 AWG oder 2 x 24 AWG ÷ 14 AWG 		
Drehmoment	 0.5 ÷ 0.6 Nm 4.42 ÷ 5.31 lbf in 		
Aux Power, I/O's, Modbus			
Eindrähtig	 1 x 0.2 ÷ 2.5mm² oder 2 x 0.2 ÷ 1.0mm² 1 x 24 AWG14 AWG oder 2 x 23 AWG17 AWG 		
Feindrähtig mit Adern-Endhülse	 1 x 0.25 ÷ 2.5mm² oder 2 x 0.2 ÷ 1.5mm² 1 x 23 AWG ÷ 14 AWG oder 2 x 20 AWG ÷ 16 AWG 		
Drehmoment	 0.5 ÷ 0.6 Nm 4.42 ÷ 5.31 lbf in 		

5.3 Hilfsenergie

Erdanschluss mit Schutzerde verbinden, bevor die Versorgungsspannung angeschlossen wird.

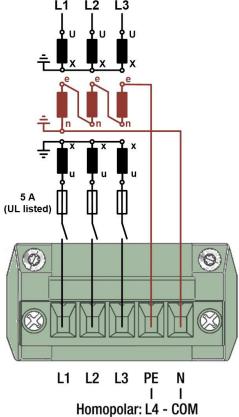
Zum Abschalten der Hilfsenergie ist in der Nähe des Gerätes eine gekennzeichnete, leicht erreichbare Schaltvorrichtung mit Strombegrenzung nach IEC 60947-2 vorzusehen. Die Absicherung sollte 10A oder weniger betragen und an die vorhandene Spannung und den Fehlerstrom angepasst sein.

5.4 Eingänge

Alle **Spannungs-Messeingänge** müssen durch Stromunterbrecher oder Sicherungen von 5 A oder weniger abgesichert werden. Dies gilt nicht für den Neutralleiter. Es muss eine Methode bereitgestellt werden, welche erlaubt das Gerät spannungsfrei zu schalten, wie z.B. ein deutlich gekennzeichneter Stromunterbrecher oder abgesicherter Trennschalter nach IEC 60947-2 oder IEC 60947-3.

Bei Verwendung von **Spannungswandlern** dürfen deren Sekundär-Anschlüsse niemals kurzgeschlossen werden.

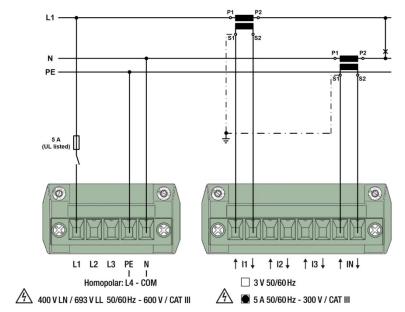
Die Strom-Messeingänge dürfen nicht abgesichert werden!


Bei Verwendung von **Strom- auf Stromwandlern** (z.B. x/5 A) müssen die Sekundäranschlüsse bei der Montage und vor dem Entfernen des Gerätes kurzgeschlossen werden. Sekundär-Stromkreise dürfen nie unter Last geöffnet werden.

Geräte mit 3V 50/60Hz Stromeingängen

- Die Stromsensoren inklusive Leiterisolation müssen in Summe eine verstärkte oder doppelte Isolierung zwischen dem primärseitig angeschlossenen Netzstromkreis und den Messeingängen am Gerät garantieren.
- Die Anschlüsse ↓ der Stromeingänge sind intern verbunden. Falls die 3V-Stromsensoren geerdet werden sollen, muss dies über den gemeinsamen Anschluss erfolgen.

- Die Beschaltung der Eingänge ist abhängig von der programmierten Anschlussart (Netzform).
- In den Anschlussschemas auf den nächsten Seiten sind konventionelle Strom/Strom-Wandler verwendet. Falls das Gerät mit 3V-Stromeingängen ausgerüstet ist, erfolgt der Anschluss der Stromwandler gleich, aber unter Verwendung von Sensoren die Strom auf Spannung umsetzen.
- In den Anschlussschemas auf den nächsten Seiten sind konventionelle Spannungswandler verwendet. Falls Spannungswandler mit Extrawicklungen für die Bestimmung der homopolaren Spannung eingesetzt werden, sollte der Anschluss wie unten dargestellt erfolgen.


Homopolar: L4

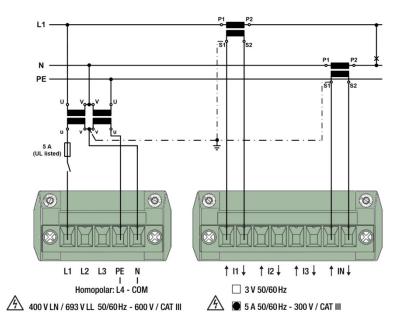
400 V LN / 693 V LL 50/60 Hz - 600 V / CAT III

Damit die homopolare Spannung $U_{4\mathbb{C}}$ gemessen wird, muss in den Einstellungen der Messung der Punkt "Messe homopolare Spannung" auf "Ja" gesetzt werden. Diese Einstellung steht nur bei 3-Leiter Anschlussarten zur Verfügung.

Einphasen-Wechselstrom

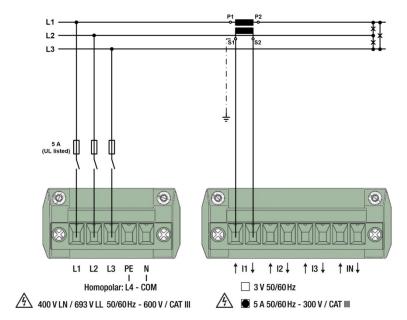
Mit Stromwandler

Falls der Strom I_N nicht gemessen werden soll, kann der entsprechende Wandler weggelassen werden.


Falls die Spannung U_{NE} nicht gemessen werden soll, kann der Anschluss von PE entfallen.

Direktanschluss

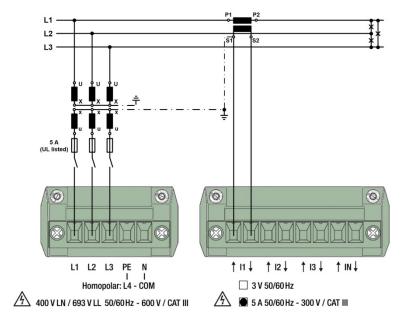
Falls nur Ströme bis 7.5A gemessen werden sollen, sind keine Stromwandler erforderlich, aber es gilt folgende Einschränkung:


Max. zulässige Nennspannung 300V gegen Erde!

Mit Strom- und Spannungswandler

Falls der Strom I_N oder die Spannung U_{NE} nicht gemessen werden sollen, können die entsprechenden Wandler weggelassen werden.

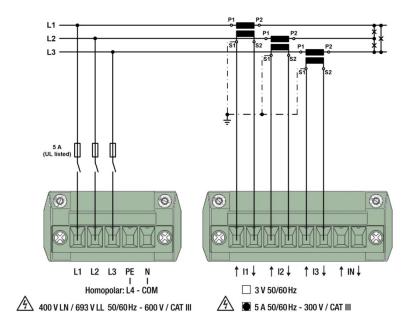
Dreileiter-Drehstromnetz, gleichbelastet, Strommessung L1



Mit Stromwandler

Falls nur Ströme bis 7.5A gemessen werden sollen, ist kein Stromwandler erforderlich, aber es gilt folgende Einschränkung:

Max. zulässige Nennspannung 300V gegen Erde (520V ph-ph)!

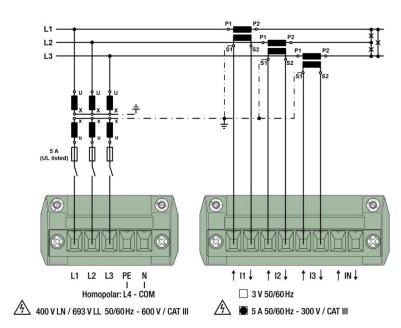

Mit Strom- und Spannungswandler

Bei Strommessung über L2 oder L3, Anschluss nach folgender Tabelle vornehmen:

Klemmen	↑ I1	I1 ↓	L1	L2	L3
Strommessung über L2	I2(S1)	I2(S2)	L2	L3	L1
Strommessung über L3	I3(S1)	13(S2)	L3	L1	L2

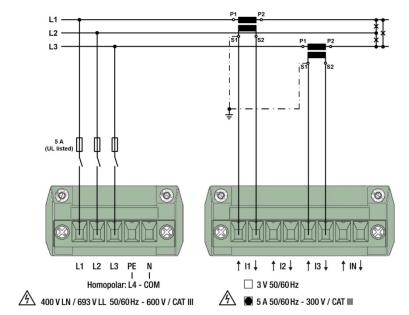
Durch die Rotation der Spannungs-Anschlüsse werden die Messwerte U12, U23 und U31 vertauscht zugewiesen

Dreileiter-Drehstromnetz, ungleichbelastet



Mit Stromwandlern

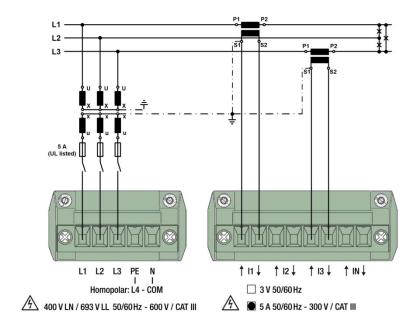
Falls nur Ströme bis 7.5A gemessen werden sollen, sind keine Stromwandler erforderlich, aber es gilt folgende Einschränkung:



Max. zulässige Nennspannung 300V gegen Erde (520V ph-ph)!

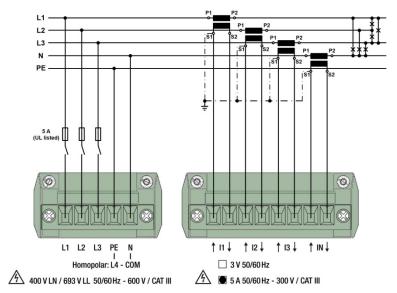
Mit Stromwandlern und 3 einpolig isolierten Spannungswandlern

Dreileiter-Drehstromnetz, ungleichbelastet, Aron-Schaltung



Mit Stromwandlern

Falls nur Ströme bis 7.5A gemessen werden sollen, sind keine Stromwandler erforderlich, aber es gilt folgende Einschränkung:



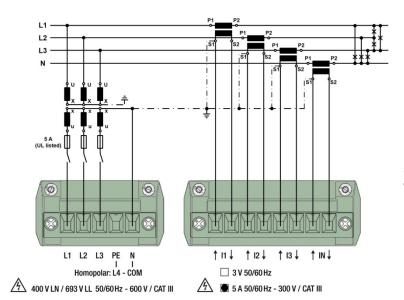
Max. zulässige Nennspannung 300V gegen Erde (520V ph-ph)!

Mit Stromwandlern und 3 einpolig isolierten Spannungswandlern

Vierleiter-Drehstromnetz, ungleichbelastet

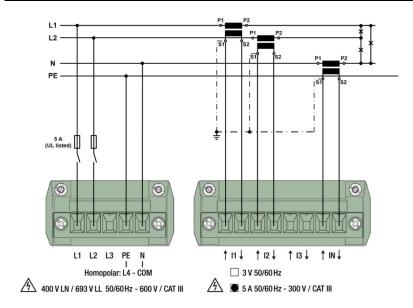
Mit Stromwandlern

Falls die Spannung U_{NE} nicht gemessen werden soll, kann der Anschluss von PE entfallen.


Falls der Strom I_N nicht gemessen werden soll, kann der entsprechende Wandler weggelassen werden.

Direktanschluss

Falls nur Ströme bis 7.5A gemessen werden sollen, sind keine Stromwandler erforderlich, aber es gilt folgende Einschränkung:


Max. zulässige Nennspannung 300V gegen Erde (520V ph-ph)!

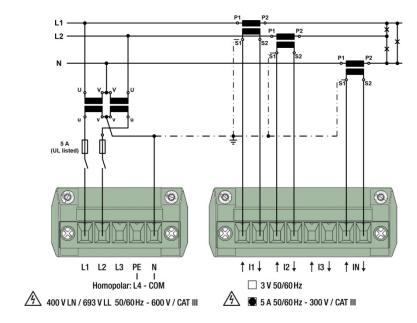
Mit Strom- und Spannungswandler

Falls der Strom I_N nicht gemessen werden soll, kann der entsprechende Wandler weggelassen werden.

Split-phase ("Zweiphasennetz"), ungleichbelastet

Mit Stromwandlern

Falls die Spannung U_{NE} nicht gemessen werden soll, kann der Anschluss von PE entfallen.


Falls der Strom I_N nicht gemessen werden soll, kann der entsprechende Wandler weggelassen werden.

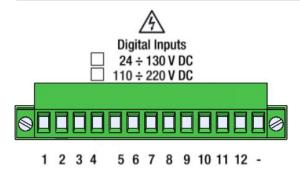
Direktanschluss

Falls nur Ströme bis 7.5A gemessen werden sollen, sind keine Stromwandler erforderlich, aber es gilt folgende Einschränkung:

Max. zulässige Nennspannung 300V gegen Erde (600V ph-ph)!

Mit Strom- und Spannungswandler

Bei Netzen ohne primärseitigen Neutralleiter kann auch ein Spannungswandler mit sekundärem Mittelabgriff verwenden werden.


5.5 Digitale Eingänge

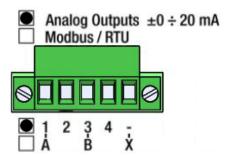
Verwendung der Eingänge der (optionalen) Digitaleingänge

- ► Triggern von Netzqualitäts-Aufzeichnungen
- ► Trigger- oder Freischaltsignal für Überwachungsfunktionen
- ▶ Verbraucher-Laufrückmeldung für Betriebsstundenzähler
- ► Registrierung externer Zustandsänderungen

Passive Eingänge (externe Speisung erforderlich)

O Die Speisespannung darf je nach Variante 130 V bzw. 220VDC nicht überschreiten.

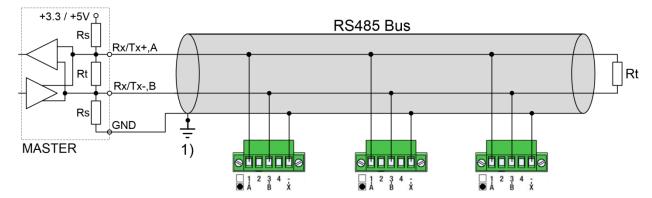
5.6 Digitalausgang


Der (optionale) Relais-Ausgang des Gerätes kann mit Spannungen bis 250V AC/DC betrieben werden.

Verwendung des Digitalausgangs

- ► Zustand interner Systemwarnungen/-alarme
- ► Anstehende Über-/Unter- Spannungs-/Stromereignisse

5.7 Analoge Ausgänge


Anbindung an Analogeingangsbaugruppe einer SPS oder eines Leitsystems

Das Gerät kann als isolierter Messwertgeber angesehen werden. Die einzelnen Ausgänge sind galvanisch nicht gegeneinander getrennt. Zur Verringerung der Störbeeinflussung sollten geschirmte und paarweise verdrillte Leitungen verwendet werden. Der Schirm sollte beidseitig geerdet werden. Bei Potenzial-Unterschieden zwischen den Leitungsenden, sollte der Schirm allerdings nur einseitig geerdet werden, um Ausgleichsströme zu vermeiden.

Beachten Sie auch entsprechende Hinweise in der Betriebsanleitung des anzuschliessenden Systems.

5.8 Modbus-Schnittstelle RS485

Über die (optionale) Modbus-Schnittstelle können Messdaten für ein übergeordnetes System bereitgestellt werden. Eine Parametrierung der Geräte über die Modbus-Schnittstelle ist nicht möglich.

- Erdanschluss nur an einer Stelle. Eventuell schon im Master (PC) vorhanden.
- Rt: Abschlusswiderstände: je 120 Ω bei langen Leitungen (> ca. 10 m)
- Rs: Speisewiderstände Bus, je 390 Ω

Die Signalleitungen (A, B) müssen verdrillt sein. GND (C) kann mit einem Draht oder durch die Leitungs-Abschirmung angeschlossen werden. In gestörter Umgebung müssen geschirmte Leitungen verwendet werden. Speise-Widerstände (Rs) müssen im Interface des Bus-Masters (PC's) vorhanden sein. Beim Anschluss der Geräte sollten Stich-Leitungen vermieden werden. Ideal ist ein reines Linien-Netz. An den Bus lassen sich bis zu 32 beliebige Modbus-Geräte anschliessen.

Bedingung für den Betrieb ist, dass alle an den Bus angeschlossenen Geräte die gleichen Kommunikations-Einstellungen (Baudrate, Übertragungsformat) und unterschiedliche Modbus-Adressen haben. Diese Parameter werden über das entsprechende Menü in den Einstellungen der Kommunikation eingestellt. Falls die Modbus/RTU-Schnittstelle vorhanden ist, aber nicht genutzt wird, kann sie gesperrt

Das Bussystem wird halbduplex betrieben und lässt sich ohne Repeater bis zu einer Länge von 1,2 km ausdehnen.

werden.

5.9 Unterbrechungsfreie Stromversorgung (USV)

Das <u>Batteriepack</u> für die unterbrechungsfreie Stromversorgung wird separat mitgeliefert. Beachten Sie, dass verglichen mit dem Lager-Temperaturbereich des Grundgerätes der <u>Lager-Temperaturbereich</u> des Batteriepacks eingeschränkt ist.

Stellen Sie sicher, dass das Gerät mit unterbrechungsfreier Stromversorgung nur in Umgebungen gemäss <u>Spezifikation</u> eingesetzt wird. Ausserhalb dieses Betriebstemperaturbereiches ist nicht sichergestellt, dass das Batteriepack wieder geladen wird.

Durch die Alterung nimmt die Kapazität der Batterie ab. Zur Sicherstellung der Überbrückungszeit sollte diese deshalb alle 3 bis 5 Jahre ersetzt werden.

Gefahr für Feuer oder Brand. Der herausgenommene Akku darf nicht zerlegt, zerkleinert, erhitzt oder verbrannt werden.

Ersetzen Sie den Akku nur durch einen <u>Akku des gleichen Typs</u>. Die Verwendung einer anderen Batterie kann ein Brand- oder Explosionsrisiko darstellen.

5.10 GPS-Zeitsynchronisation

GPS

Das Gerät kann mit einem Stecker für den Anschluss eines GPS-Empfängers, zur hochgenauen Zeitsynchronisation des Messgerätes, ausgerüstet sein. Der GPS-Empfänger wird als Aussenantenne eingesetzt, um von mehreren GPS-Satelliten gleichzeitig Daten zu verarbeiten.

GPS-Empfänger

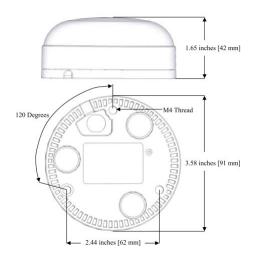
Verwenden Sie ausschliesslich den von uns als Zubehör angebotenen Empfänger **Garmin GPS 16x-LVS** (Art-Nr. 181'131). Dieser ist von uns vorkonfiguriert und liefert die erforderlichen Zeit-Informationen (Sentences) ohne weiteren Konfigurationsaufwand.

Schutzart: IPx7 (wasserdicht)

Betriebstemperatur: -30...80°CLagertemperatur: -40...80°C

1Hz-Pulsgenauigkeit: 1µsStecker: RJ45

Wahl des Aufstellungsortes

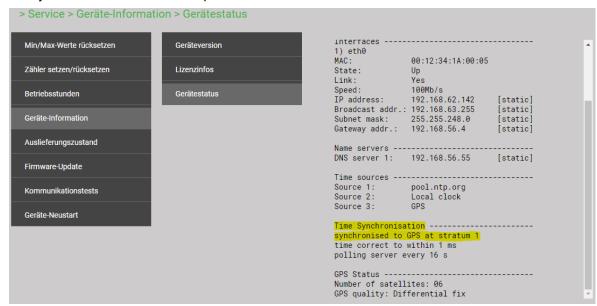

Der GPS-Empfänger benötigt für den korrekten Betrieb Daten von mindestens 3 Satelliten gleichzeitig. Bei der Wahl des Aufstellungsortes sollte deshalb auf möglichst freie Sicht auf den Himmel geachtet werden. Dies kann z.B. auf dem Dach eines Gebäudes sein, ohne dass der Empfang durch andere Gebäude oder Hindernisse eingeschränkt ist. Der Empfänger sollte zudem nicht in der Nähe von grossen, elektrisch leitfähigen Flächen montiert werden, da dies die Empfangsqualität beeinträchtigen kann. Der Abstand zu Sendeantennen sollte mindestens 1m betragen.

Falls ein Blitzschutz erforderlich ist, muss dieser vom Anwender selbst bereitgestellt werden.

Montage des GPS-Empfängers

- Der GPS-Empfänger Garmin GPS 16x-LVS kann mit Hilfe von drei M4-Schrauben bündig montiert werden.
- 120° Verteilung auf einem Teilkreis von Ø71.6mm
- Gewindelänge max. 8mm. Bei Verwendung längerer Schrauben kann der GPS-Empfänger beschädigt werden.

Anschluss des GPS-Empfängers



Verbinden Sie den RJ45-Stecker des Anschlusskabels nie mit einem Netzwerkgerät wie Router oder Switch. Diese Geräte könnten beschädigt werden.

Der GPS-Empfänger wird direkt am GPS-Anschlussmodul eingesteckt. Das Verbindungskabel hat eine Länge von 5m. Eine Verlängerung mit Hilfe einer RJ45-Kupplung und eines Ethernet-Kabels ist möglich. Das Anschlusskabel sollte nicht parallel zu stromführenden Leitern verlegt werden. Ein Verdrehen oder scharfkantiges Knicken des Kabels sollten ebenfalls vermieden werden.

Inbetriebnahme

- Im Einstell-Menü die Zeitsynchronisation auf "NTP Server / GPS" schalten
- Zeitsynchronisations-Status überprüfen

- Die Zeitsynchronisation kann neu gestartet werden, indem die Zeitsynchronisation im Menü aus- und wieder eingeschaltet wird.
- Die Zeitsynchronisation via GPS und NTP-Server kann parallel betrieben werden. Falls beide Synchronisationsquellen verfügbar sind, verwendet das System die genauere Zeitquelle, welche im Normalfall GPS ist.

Beim ersten Anschliessen eines GPS-Empfängers oder wenn er länger nicht mehr in Betrieb war, kann es bis zu 1 Stunde dauern, bis genügend Satelliten für einen zuverlässigen Betrieb des GPS-Empfängers und somit für eine zuverlässige Zeitsynchronisation gefunden sind.

5.11 IRIG-B Zeitsynchronisation

Das Gerät kann mit einem BNC-Anschluss für den Anschluss des Signals eines IRIG-B Zeitservers ausgerüstet sein. Der Eingang unterstützt IRIG-B004, unmodulated auf TTL-Pegel.

6. Inbetriebnahme

Vor der Inbetriebnahme überprüfen, ob die Anschlussdaten des Gerätes mit den Daten der Anlage übereinstimmen.

Danach kann das Gerät durch Einschalten der Hilfsenergie und der Messeingänge in Betrieb genommen werden.

6.1 Cyber Security Richtlinien

Aktivierung der Firewall

Um Daten (Unterabrechnungen, Daten zur Energieeffizienz, Daten zur Stromüberwachung, Daten zur Netzqualität, Syslog-Daten, Zeitstempel) vor unbefugtem Zugriff zu schützen, muss die IP-basierende Client Whitelist unmittelbar während der Erstinbetriebnahme des Gerätes aktiviert werden.

Konfigurations-Schnittstelle

Um die Gerätekonfiguration vor unbefugter Manipulation zu schützen, muss die rollenbasierte Zugriffskontrolle aktiviert und die Rechte der einzelnen Rollen definiert werden.

Passwörter

Um das Gerät vor unbefugter Manipulation zu schützen, müssen die im rollenbasierten Zugriffskontrollsystem definierten Anwender starke Passwörter verwenden. Die Zugangsdaten müssen sicher aufbewahrt werden (z.B. keine Aufkleber mit Zugangsdaten auf das Gerät kleben).

Zugriff auf Messdaten via Anwenderschnittstelle

Um die gemessenen und/oder aufgezeichneten Daten vor unbefugter Offenlegung zu schützen, muss das rollenbasierte Zugriffskontrollsystem aktiviert und konfiguriert werden, um die Zugriffsrechte der einzelnen Rollen festzulegen.

Modbus/RTU Schnittstelle

Um Daten (Unterabrechnungen, Stromüberwachungsdaten, Daten zur Netzqualität) vor unberechtigtem Zugriff zu schützen, muss die Modbus/RTU Schnittstelle deaktiviert werden, wenn sie nicht verwendet wird.

Modbus/TCP Schnittstelle

Um Daten (Unterabrechnungen, Stromüberwachungsdaten, Daten zur Netzqualität) vor unberechtigtem Zugriff zu schützen, muss die Modbus/TCP Schnittstelle deaktiviert werden, wenn sie nicht verwendet wird.

IEC 61850 Schnittstelle

Um Daten (Unterabrechnungen, Stromüberwachungsdaten, Daten zur Netzqualität) vor unberechtigtem Zugriff zu schützen, schließen Sie die IEC 61850-Schnittstelle nicht an, wenn sie nicht verwendet wird.

NTP Schnittstelle

Das NTP-Protokoll bietet keinerlei Schutzmechanismen gegen Manipulation der Daten, beispielsweise durch ein "Man-in-the-Middle"-Szenario. Wenn in der Anwendung keine NTP-Synchronisierung verwendet wird, muss die Zeitsynchronisierung deaktiviert werden, um das Gerät vor Manipulationen der Zeit- und Zeitstempelinformationen zu schützen.

Syslog Schnittstelle

Das Syslog-Protokoll bietet keinerlei Schutzmechanismen gegen Manipulation der Daten, beispielsweise durch ein "Man-in-the-Middle"-Szenario. Um die Syslog-Daten vor unberechtigtem Zugriff zu schützen, muss die Syslog-Schnittstelle des Gerätes deaktiviert werden, wenn die Schnittstelle nicht genutzt wird.

Automatisierter Datenexport

Um die Daten vor unberechtigtem Zugriff zu schützen, muss die Exportschnittstelle des Gerätes deaktiviert werden, wenn die Schnittstelle nicht verwendet wird.

Externe I/O-Daten

Externe I/O-Daten, die vom Gerät erfasst oder ausgegeben werden, unterliegen nicht den Schutzmechanismen des Geräts gegen Offenlegung, Manipulation oder Verlust der Verfügbarkeit. Es liegt in der Verantwortung des Produktanwenders, geeignete Schutzmaßnahmen (z. B. physische Zugangsbeschränkung) zu ergreifen.

6.2 Parametrierung der Gerätefunktionen

Eine Parametrierung der Funktionen des Gerätes kann direkt am Gerät oder über einen Webbrowser vorgenommen werden. Dies setzt voraus, dass der Anwender die erforderlichen Berechtigungen besitzt.

Aus Sicherheitsgründen sind die Sicherheitseigenschaften "Benutzer- und Rechteverwaltung" (RBAC) und "Web-Security" (HTTPS) in den Werkseinstellungen aktiviert. Bevor die Geräte-Webseite via https angezeigt werden kann, muss deshalb ein Root-Zertifikat installiert werden, welches über unsere Homepage bereitgestellt wird. Sobald das Zertifikat auf den lokalen Rechner heruntergeladen wurde, kann das Zertifikat manuell installiert werden. Einfach auf die Datei doppelklicken und das Zertifikat als vertrauenswürdige Stammzertifizierung installieren.

Siehe: Konfiguration (7.5)

6.3 Überprüfen der Installation

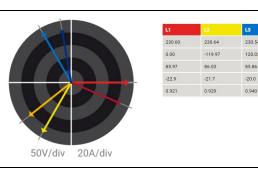
Der korrekte Anschluss der Strom- und Spannungseingänge kann auf zwei Arten überprüft werden.

a) Überprüfung der Drehfeldrichtung: Aus der Sequenz der Strom- und Spannungsvektoren wird die Drehrichtung bestimmt und mit der programmierten Drehrichtung verglichen. Die Drehfeldanzeige ist im Menü Vektordiagramm zu finden.

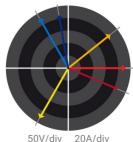
Voraussetzung für die Prüfung: Wert der anliegenden Spannungen mindestens 5% der Nennspannung, Betrag der anliegenden Ströme mindestens 0.2% des Nennstromes.

Mögliche Ergebnisse

Fehlende Phase oder zu geringe Aussteuerung


b) Überprüfung der Vektoren: Das Vektordiagramm zeigt eine technische Visualisierung der Stromund Spannungsvektoren mit Rotation im Gegenuhrzeigersinn, unabhängig von der tatsächlichen Drehrichtung.

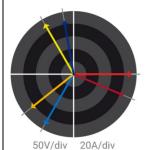
Α


Das Diagramm wird ausgehend von der Spannung des Referenzkanals (Richtung 3 Uhr) aufgebaut

85.86

Korrekter Anschluss (Erwartungshaltung)

- Reihenfolge der Spannungen im Uhrzeigersinn $L1 \rightarrow L2 \rightarrow L3 (0^{\circ} \rightarrow -120^{\circ} \rightarrow 120^{\circ})$
- Reihenfolge der Ströme im Uhrzeigersinn $L1 \rightarrow L2 \rightarrow L3$
- Ähnlicher Winkel zwischen Spannung und Stromvektoren in allen Phasen (ca. -20°)

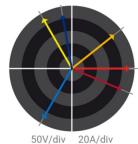


Was ist hier falsch?

- Reihenfolge der Spannungen: L1 → L2 → L3
- Reihenfolge der Ströme: L1→ L3 → L2; Strom L2 ist ausserhalb der Sequenz
- Winkel U-I: Der Winkel zwischen U₁₂ und I₁₂ ist ca. 180° falsch

Erforderliche Korrektur

Umpolen der Anschlüsse des Strom I₂

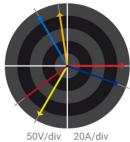


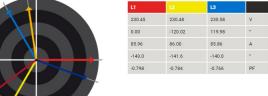
Was ist hier falsch?

- Reihenfolge der Spannungen: L1→ L3 → L2; L3 und L2 scheinen vertauscht zu sein
- Reihenfolge der Ströme: L1 → L2 → L3
- \bullet Winkel U-I: Die Winkel zwischen U_{L2} / I_{L2} und U_{L3} / I_{L3} entsprechen nicht der Erwartung

Erforderliche Korrektur

Drehen der Spannungsanschlüsse L2 und L3




Was ist hier falsch?

- Reihenfolge der Spannungen: L1→ L3 → L2; L3 und L2 scheinen vertauscht zu sein
- Reihenfolge der Ströme: L1→ L3 → L2; Strom L2 ist ausserhalb der Sequenz
- $\bullet~$ Winkel U-I: Die Winkel zwischen U_{L2} / I_{L2} und U_{L3} / I_{L3} entsprechen nicht der Erwartung

Erforderliche Korrektur

Drehen der Spannungsanschlüsse L2 und L3 und Umpolen des Strom I2.

Was ist hier falsch?

- Reihenfolge der Spannungen: L1 → L2 → L3
- Reihenfolge der Ströme: L3 → L1 → L2
- Winkel U-I: Die U-I Winkel entsprechen nicht der Erwartung, sind aber ähnlich.

Erforderliche Korrektur

Zyklisches Vertauschen der Spannungsanschlüsse: L1→L3, L2→L1, L3→L2. Alternativ kann die Reihenfolge der Ströme angepasst werden, ist aber aufwendiger.

6.4 Ethernet-Installation

6.4.1 Einstellungen

Bevor Geräte an ein bestehendes Ethernet-Netzwerk angeschlossen werden, muss sichergestellt werden, dass diese den normalen Netzwerkbetrieb nicht stören. Die Regel ist:

Keines der neu anzuschliessenden Geräte darf dieselbe IPv4/6-Adresse aufweisen wie ein bereits installiertes Gerät

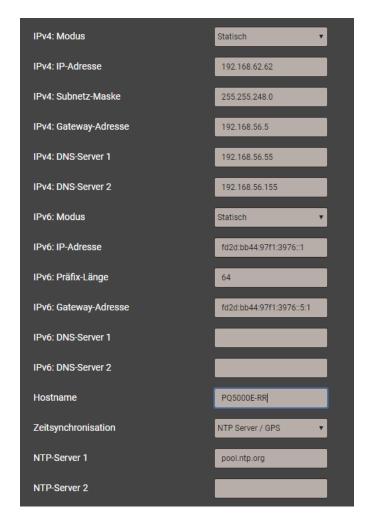
Das Gerät unterstützt sowohl IPv4 als auch IPv6 Kommunikation. IPv4-Kommunikation ist standardmässig aktiviert, IPv6 kann zusätzlich via Konfiguration aktiviert werden.

IPv4-Kommunikation

Abhängig von der Geräteausführung, können mehrere Netzwerkgeräte mit unterschiedlichen Default IP-Adressen vorhanden sein.

Schnittstelle	Anwendung	Default IPv4	Einstellungen via Menü
Standard	Konfiguration Gerät 1	192.168.1.101	Einstellungen Kommunikation Ethernet
Standard	Konfiguration Gerät 2 (nur beim Doppelrack)	192.168.1.102	Einstellungen Kommunikation Ethernet
IEC 61850	IEC61850-Kommunikation	192.168.1.111	Einstellungen IEC61850 Ethernet

IPv6-Kommunikation


Abhängig von der Geräteausführung, können mehrere Netzwerkgeräte mit unterschiedlichen Default IPv6-Adressen vorhanden sein, sobald die IPv6-Kommunikation aktiviert ist.

Schnittstelle	Anwendung	Default IPv6	Einstellungen via Menü
Standard	Konfiguration Gerät 1	fd2d:bb44:97f1:3976::1	Einstellungen Kommunikation Ethernet
Standard	Konfiguration Gerät 2 (nur beim Doppelrack)	fd2d:bb44:97f1:3976::2	Einstellungen Kommunikation Ethernet
IEC 61850	IEC61850-Kommunikation	fd2d:bb44:97f1:3976::B	Settings IEC61850 Ethernet

Netzwerk-Einstellungen (Kommunikation | Ethernet)

Die folgenden Einstellwerte müssen mit dem Netzwerk-Administrator abgesprochen werden:

• IPv4/6: IP-Adresse	Diese muss eindeutig sein, darf also nur einmal im Netzwerk vergeben sein.
• IPv4: Subnetz-Maske	Definiert wie viele Geräte innerhalb des Netzwerkes direkt adressierbar sind. Diese Einstellung ist für alle Geräte gleich. <u>Beispiele</u>
• IPv4/6: Gateway-Adresse	Wird für die Auflösung von Adressen bei der Kommunikation zwischen verschiedenen Netzwerken benötigt. Sollte eine gültige Adresse im direkt adressierbaren Netzwerk enthalten.
• IPv4/6: DNS-Server x	Wird benötigt um einen Domänen-Namen in eine Adressen aufzulösen, falls z.B. für den NTP-Server ein Name (pool.ntp.org) verwendet wird. Weitere Infos.
• IPv6: Präfix-Länge	Ist vergleichbar mit der Subnetz-Maske bei IPv4-Netzwerken; es die Anzahl der linksbündigen Bits des Site-Präfixes, welche für eine direkte Kommunikation übereinstimmen müssen.
• Hostname	Individuelle Bezeichnungsmöglichkeit für jedes Gerät. Über den Hostname kann das Gerät eindeutig im Netzwerk identifiziert werden. Es sollte deshalb für jedes Gerät ein eindeutiger Name eingestellt werden.
NTP-Server x	NTP-Server werden als Basis für die Zeitsynchronisation verwendet

Netzwerkeinstellungen Konfigurations-Schnittstelle

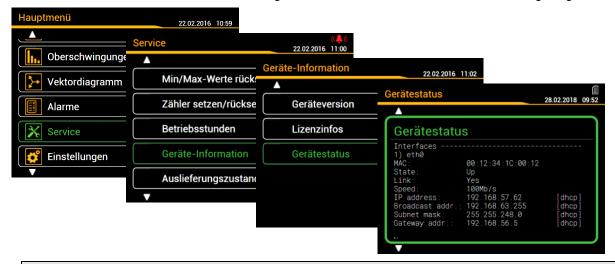
Netzwerkeinstellungen IEC61850-Schnittstelle

IPv4: Subnetz-Maske

Damit das Gerät z.B. direkt mit einem PC kommunizieren kann, müssen beide Geräte unter Einbezug der **Subnetz-Maske** im gleichen Netz sein:

Beispiel 1	dezimal	binär
IP-Adresse	192.168. 1.101	11000000 10101000 00000001 011 00101
Subnetz-Maske	255.255.255.224	11111111 11111111 11111111 11100000
	variabler Bereich	ххххх
1. Adresse	variabler Bereich 192.168. 1. 96	11000000 10101000 00000001 01100000

▶ Das Gerät 192.168.1.101 kann mit den Geräten 192.168.1.96 ... 192.168.1.127 direkt kommunizieren


Beispiel 2	dezimal	binär
IP-Adresse	192.168. 57. 64	11000000 10101000 001110 01 01000000
Subnetz-Maske	255.255.252. 0	11111111 11111111 111111 100 00000000
	variabler Persieb	
	variabler Bereich	XX XXXXXXX
1. Adresse	192.168. 56. 0	11000000 10101000 00111000 00000000

▶ Das Gerät 192.168.57.64 kann mit den Geräten 192.168.56.0 ... 192.168.59.255 direkt kommunizieren

IPv4: Mode >> DHCP

Ist ein DHCP-Server verfügbar, kann bei der Standard-Schnittstelle alternativ der Modus "**DHCP**" oder "**DHCP**, **Nur Adressen**" ausgewählt werden. Das Gerät erhält dann alle erforderlichen Informationen vom DHCP-Server. Der Unterschied der beiden Modi ist, dass bei "DHCP" auch die DNS-Server Adresse bezogen wird.

Die vom DHCP-Server erhaltenen Einstellungen können lokal über das Service-Menü abgefragt werden:

Je nach Einstellungen des DHCP-Servers kann sich die vergebene IP-Adresse bei jedem Neustart des Gerätes ändern. Es wird deshalb empfohlen, den DHCP-Modus nur während der Inbetriebsetzung zu verwenden.

Zeitsynchronisation via NTP-Protokoll

Für die *Zeitsynchronisation* von Geräten via Ethernet ist *NTP* (Network Time Protokoll) der Standard. Entsprechende Zeit-Server werden in Computer-Netzwerken eingesetzt, stehen aber auch im Internet zur freien Verfügung. Mit NTP ist es möglich alle Geräte mit einer gemeinsamen Zeitbasis zu betreiben.

Es können jeweils zwei unterschiedliche NTP-Server definiert werden. Steht der erste Server nicht zur Verfügung, wird versucht über den zweiten Server die Zeit zu synchronisieren.

Wird ein öffentlicher NTP-Server, wie z.B. "pool.ntp.org", verwendet, ist eine Namensauflösung erforderlich. Dies geschieht über einen **DNS-Server**. Dessen IP-Adresse muss in den Kommunikations-Einstellungen der Ethernet-Schnittstelle eingestellt werden, damit eine Kommunikation mit dem NTP-Server – und damit eine Zeitsynchronisation – möglich wird. Ihr Netzwerk-Administrator kann ihnen die erforderlichen Informationen zur Verfügung stellen.

Die Zeitsynchronisation der Standard Ethernet-Schnittstelle kann auch über einen GPS-Empfänger oder einen IRIG-B Zeitserver erfolgen.

TCP-Ports

Die TCP-Kommunikation erfolgt über sogenannte Ports. An der Nummer des verwendeten Ports lässt sich die Art der Kommunikation erkennen. Standardmässig erfolgt die Modbus/TCP-Kommunikation über den TCP-Port 502, NTP verwendet Port 123. Der Port für die Modbus/TCP-Kommunikation kann aber auch geändert werden. So kann jedem Gerät ein eigener Port zur Verfügung gestellt werden, z.B. 503, 504, 505 usw., zur leichteren Analyse des Datenverkehrs. Unabhängig von dieser Einstellung ist immer auch eine Kommunikation via Port 502 möglich. Das Gerät erlaubt mindestens 5 gleichzeitige Verbindungen zu beliebigen Clients.

Firewall

Aus Sicherheitsgründen ist heute jedes Netzwerk mit einer Firewall geschützt. Bei der Konfiguration der Firewall wird entschieden, welche Kommunikation erwünscht ist und welche blockiert wird. Der TCP-Port 502 für die Modbus/TCP-Kommunikation gilt allgemein als unsicher und ist oft gesperrt. Dies kann dazu führen, dass eine netzwerkübergreifende Kommunikation (z.B. via Internet) nicht möglich ist.

6.4.2 Anschluss der Standard-Schnittstelle

Die Standard Ethernet-Schnittstelle ist über jeweils eine RJ45-Buchse via Gehäusefront und via Geräterückseite verfügbar.

Schnittstelle: RJ45 Buchse, Ethernet 100BaseTX

Mode: 10/100 MBit/s, Voll-/Halbduplex, Autonegotiation

Protokolle: http, https, Modbus/TCP, NTP

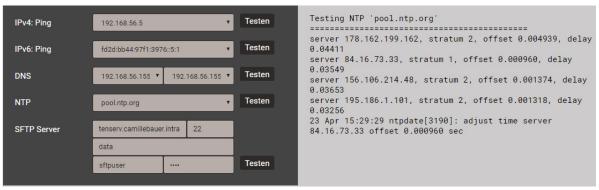
6.4.3 Anschluss der IEC61850-Schnittstelle

Die beiden Ports (RJ45) der IEC61850-Schnittstelle sind via Geräterückseite verfügbar. Die Anschlüsse sind gleichwertig und intern über einen Switch verbunden.

Schnittstelle: RJ45 Buchse, Ethernet 100BaseTX

Mode: 10/100 MBit/s, Voll-/Halbduplex, Autonegotiation

Protokolle: IEC61850, NTP


6.4.4 MAC-Adressen

Zur eindeutigen Identifikation von Ethernet-Anschlüssen in einem Netzwerk, ist jedem Anschluss eine eindeutige MAC-Adresse zugeordnet. Im Gegensatz zur IP-Adresse, welche vom Anwender jederzeit geändert werden kann, ist die MAC-Adresse statisch. Die jeweiligen MAC-Adressen sind auf dem Typenschild angegeben und können auch über Service | Geräte-Information | Gerätestatus bzw. IEC61850 Status abgefragt werden.

6.5 Kommunikationstests

Über das Service-Menü auf der Webseite des Gerätes kann überprüft werden, ob die eingestellte Netzwerkstruktur gültig ist. Das Gerät muss via Gateway den DNS-Server finden. Dieser kann die URL des NTP-Servers in eine IP-Adresse auflösen. Als Schnittstelle für die Kommunikationstests dient die Standard Ethernet-Schnittstelle.

- Ping: Verbindungstest zu einem beliebigen Netzwerkgerät, Voreinstellung Gateway-Adresse
- DNS: Test, ob Namensauflösung via DNS funktioniert, Voreinstellung URL des NTP-Servers
- NTP: Test, ob der eingestellte NTP-Server tatsächlich ein Zeitserver (stratum x) ist
- SFTP: Test, ob Zugriff auf SFTP-Server funktioniert. Es wird eine Testdatei auf dem Basis-Verzeichnis des Servers abgelegt

NTP-Server Test

6.6 3G/4G Router

Der optionale 3G/4G-Router stellt den Zugriff auf Gerätedaten über das Mobilfunknetz zur Verfügung.

- Typ: RUT240, LTE CAT4 Industrial Cellular Router
- · Hersteller: Teltonika
- Anleitung verfügbar via: https://wiki.teltonika.lt/view/RUT240 Manual
- Default IP-Adresse f
 ür die Konfiguration: 192.168.1.1

SIM-Karte

Der Router wird ohne SIM-Karte ausgeliefert. Um eine SIM-Karte einzusetzen, muss zuerst die obere Abdeckung des Racks geöffnet werden, indem die 6 Befestigungsschrauben entfernt werden.

Die Abdeckung darf nur geöffnet werden, wenn alle bereits angeschlossenen Leitungen spannungsfrei sind!

Der Router ist an der linken Seitenwand montiert (von der Rückseite aus gesehen).

- 1. Taste der SIM-Halterung mit SIM-Nadel drücken
- 2. SIM-Halter herausziehen
- 3. SIM-Karte in den SIM-Halter einlegen
- 4. SIM-Halter in den Router zurückschieben

6.7 IEC 61850-Schnittstelle

Die Möglichkeiten der optionalen IEC61850-Schnittstelle sind in einem separaten Dokument beschrieben:

>> IEC61850-Schnittstelle SINEAX AMx000/DM5000, LINAX PQx000, CENTRAX CUx000

Dieses Dokument ist via http://www.camillebauer.com/ verfügbar.

6.8 Simulation von analogen / digitalen Ausgängen

Um zu überprüfen, ob nachgeschaltete Kreise mit vom Messgerät bereitgestellten Ausgangswerten korrekt arbeiten, können über das Service-Menü **Simulation** vorhandene analoge oder digitale Ausgänge simuliert werden. Dazu können entweder analoge Ausgangswerte vorgegeben oder der diskrete Zustand des Digitalausgangs gesetzt werden.

Die Simulation kann sowohl über die Webseite als auch über das lokale Display erfolgen.

Simulation analoger Ausgänge via Geräte-Webpage

6.9 Sicherheitssystem

Im Gerät sind verschiedene Sicherheitsmechanismen implementiert, welche aktiviert werden können um einen umfassenden Zugriffschutz auf alle Gerätedaten bereitzustellen.

- ➤ Das System zur Rollenbasierenden Zugriffskontrolle (engl. RBAC) erlaubt den Zugriff auf Messdaten, Konfigurationseinstellungen und Servicefunktionen auf die Rechte des aktuellen Anwenders einzuschränken. Für den Zugriff via Webseite oder lokales Display werden dazu die verfügbaren Menüs reduziert und / oder für spezielle Dienste nur Leserechte gewährt. Für den Datenzugriff über eine externe Anwendung ist ein API (Application Programming Interface) Schlüssel erforderlich, welcher als Spezial-Anwender implementiert werden kann.
- HTTPS stellt eine verschlüsselte Kommunikation via TLS (Transport Layer Security) bereit
- Mit der <u>Client Whitelist</u> kann der Zugriff auf das Gerät auf spezifische Clients mit definierbarer IP-Adresse eingeschränkt werden
- ➤ **Kommunikation sperren:** Kommunikationsdienste wie Modbus/RTU, Modbus/TCP oder SYSLOG sind per Voreinstellung gesperrt und müssen aktiv über die Konfiguration freigegeben werden. Damit können nicht-autorisierte Zugriffe verhindert und mögliche Angriffspunkte eliminiert werden.
- <u>Audit Log</u>: Das Gerät speichert sicherheitsbezogene Meldungen in einer separaten Liste, auf die via Service-Menü zugegriffen werden kann. Für Sicherheitsüberwachungen kann der Listeninhalt auch mit Hilfe des SYSLOG Protokolls zu einem zentralen Logserver übertragen werden.

Falls das Gerät eine Anzeige hat, sind im Sicherheitssystem definierte Einschränkungen auch bei der Bedienung via Anzeige aktiv. Anwender können auch auf die lokale Bedienung eingeschränkt werden.

6.9.1 RBAC-Management

Jeder Zugriff auf Gerätedaten via Webseite, die lokale Anzeige oder externe Software-Anwendungen kann durch das RBAC-System umfassend geschützt werden. So kann der Zugriff auf Messwert-Informationen, die Änderung von Konfigurationsparametern oder das Setzen / Löschen von Messdaten individuell an die Rolle des aktiven Anwenders angepasst werden.

Hinweis: Alle Einstellungen des Sicherheitssystems werden im Gerät nur in verschlüsselter Form gespeichert, zudem werden Anmeldeinformationen nie in Klartext übertragen.

Es werden maximal 8 Anwender unterstützt

> 3 vordefinierte Standard-User

- admin: Ein User mit Administrator-Rechten (Werkseinstellung Passwort: "CBM_1234")
- *localgui*: Der Standard-User für das lokale Display. Seine Berechtigungen bestimmen, was über das eingebaute Display angezeigt oder geändert werden kann, ohne dass sich ein User anmeldet.
- anonymous: Der Standard-User für den Zugriff via Webseite. Seine Berechtigungen bestimmen, was über die Webseite angezeigt oder geändert werden kann, ohne dass sich ein User anmeldet.

> Bis zu 5 definierbare User oder API-Schlüssel

User oder API-Schlüssel können durch jeden User mit Schreibrechten für die Einstellungen des Sicherheitssystems angelegt werden. Auf jeden Fall kann jeder User mit einem Web-Login das Passwort seines eigenen Accounts ändern.

API-Schlüssel werden benötigt, damit Anwendungen via REST-Schnittstelle (Kommunikation via http/https Protokoll) auf Gerätedaten zugreifen können. Solche Schlüssel sind zeitlich unbeschränkt und haben entweder Leserechte, alle Rechte oder alle Rechte ohne Security.

Der vordefinierte Administrator oder jeder andere User mit vollen Zugriffsrechten auf die Einstellungen des Sicherheitssystems kann:

- Seine eigenen Zugangsdaten (Benutzername und / oder Passwort) ändern
- Die Zugangsdaten jedes anderen Users ändern
- Frei die Berechtigungen der Standard-User *localgui* und *anonymous* festlegen. Beide User sind Standard-User ohne Zugangsdaten.
- Neue User bis zu einem Maximum von 5 anlegen
- User auf die lokale Bedienung einschränken (kein Weblogin)

Benutzer / API-Schlüssel hinzufügen

Zusätzlich zu den 3 vordefinierten Benutzern können maximal 5 weitere Benutzer oder API-Schlüssel angelegt werden. Wählen Sie dazu "Benutzer/API-Schüssel hinzufügen" und wählen dann die Art des anzulegenden Users.

Benutzer: Während der Passworteingabe werden die Anforderungen an ein sicheres Passwort überprüft und das Ergebnis angezeigt. Jeder Benutzer kann auf Basis der Rechte eines existierenden Benutzers erzeugt werden, aber all diese Berechtigungen können anschliessend noch geändert werden.

Bei der Festlegung / Änderung der Passwörter sind Einschränkungen zu berücksichtigen:

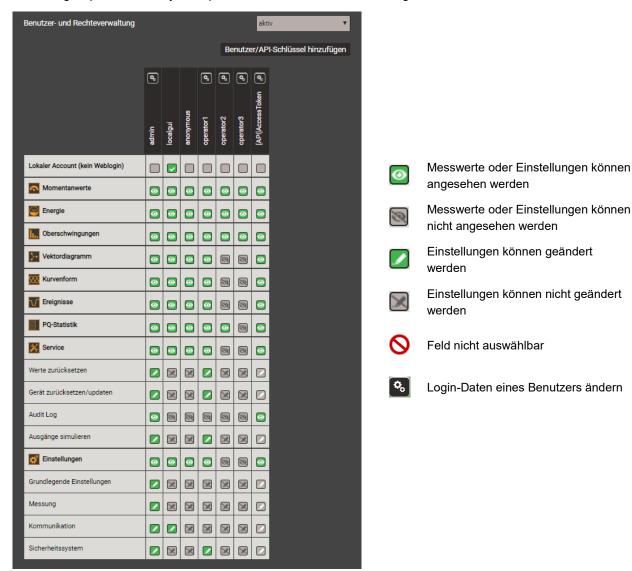
- Minimale Passwortlänge 8 Zeichen
- Mindestens drei unterschiedliche Zeichenarten (Kleinbuchstaben, Grossbuchstaben, Zahlen, Sonderzeichen)

ACHTUNG: Falls Anmeldeinformationen (Benutzername und/oder Passwort) eines Benutzers mit Schreibrechten für das Sicherheitssystem geändert werden, muss diese Information sicher aufbewahrt werden. Aus Sicherheitsgründen kann das RBAC-System nur im Werk zurückgesetzt werden, es ist keine Hintertür implementiert.

API-Schlüssel: Nebst dem Schlüsselnamen müssen die der Anwendung zu gewährenden Rechte für den Zugriff via REST-Schnittstelle festgelegt werden. Die resultierenden Zugriffsrechte können nachher nicht mehr geändert werden.

Sobald der API-Schlüssel erzeugt wurde, kann er via Seige API-Schlüssel" angezeigt werden.

Wenn die Anwendung via REST-Schnittstelle mit dem Gerät kommunizieren will, muss sie den API-Schlüssel und das Session-Token über das Cookie-Feld im Aufruf-Header bereitstellen, z.B.:

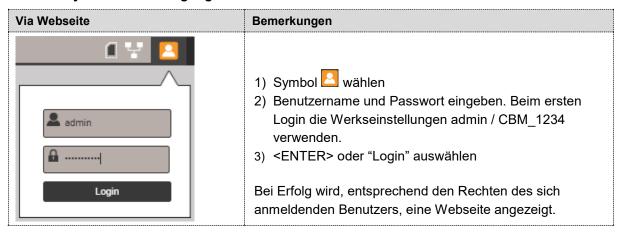

Cookie:

AccessToken=eyJhbGci0iJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhdWQi0iIxYjg4IiwiaWF0IjoxNTc5MTU4OTc4LCJzdWIi0iJhbm9ueW1vdXMiLCJ0eG4i0iIxOTIuMTY4LjU4LjExNCJ9.LiLjuJcs2bZAmYHlvdMXTAlr87gxUX-3kZ4cfz6jdMc;sessionToken={5d1ca47c-8d38-4a08-85d5-fefbd941fa20}

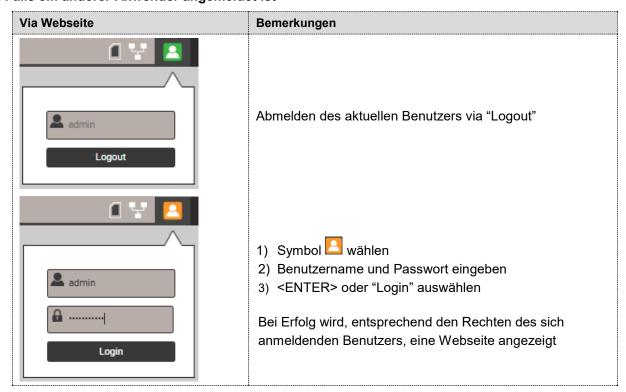
Weitere Informationen sind im Dokument "http interface SINEAX PQx000" enthalten.

Zuweisung von Benutzerrechten

Die Zuweisung der Benutzerrechte, die für die Bedienung gewährt werden sollen, erfolgt über das Menü Einstellungen | Sicherheitssystem | Benutzer- und Rechteverwaltung:

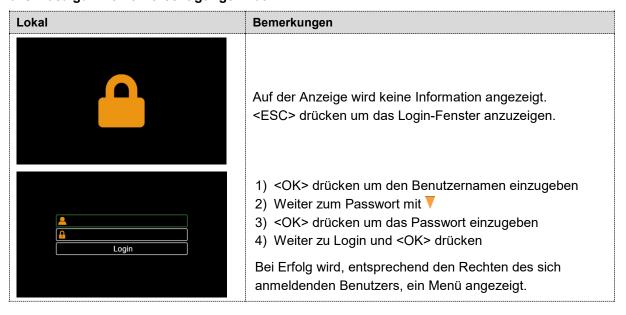

Übersicht der Zugriffsrechte jedes möglichen Benutzers.

6.9.2 An- und abmelden eines Benutzers via Webseite

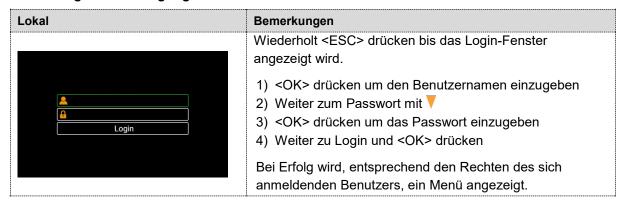

a) Falls "anonymous" keine Berechtigungen hat

Via Webseite	Bemerkungen
CAMILLE BAUER admin Login	Benutzername und Passwort eingeben Senter oder "Login" auswählen
	Bei Erfolg wird, entsprechend den Rechten des sich anmeldenden Benutzers, eine Webseite angezeigt.

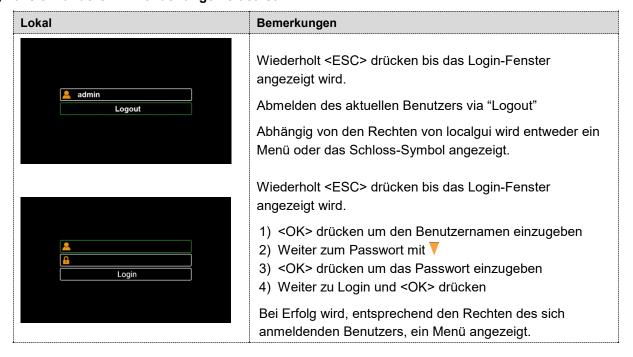
b) Falls "anonymous" Berechtigungen hat

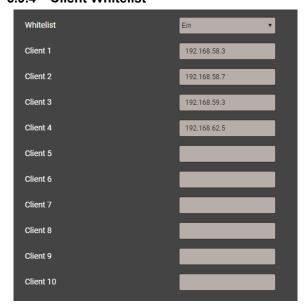


c) Falls ein anderer Anwender angemeldet ist



6.9.3 An- und abmelden eines Benutzers via lokale Anzeige


a) Falls "localgui" keine Berechtigungen hat


b) Falls "localgui" Berechtigungen hat

c) Falls ein anderer Anwender angemeldet ist

6.9.4 Client Whitelist

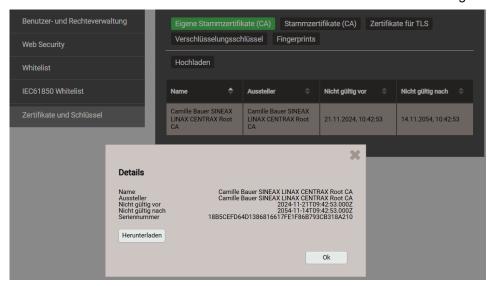
Es ist möglich eine Liste von IPv4- und/oder IPv6-Adressen v bis zu 10 Clients zu definieren, welche Zugriff auf das Gerät haben sollen. Alle anderen Clients werden geblockt. Die Whitelist kann via Einstellungen der Sicherheit im Punkt Whitelist eingeschaltet werden.

Falls ein DHCP-Server im Netz
verwendet wird, können Clients bei
jedem Aufstarten eine andere IP-Adresse
erhalten, womit der Zugriff auf das Gerät
verlorengeht.
Falls der Zugriff auf ein Gerät blockiert
ist, kann die IP-Adresse (LAN)

zurückgesetzt werden, was auch

gleichzeitig die Whitelist ausschaltet.

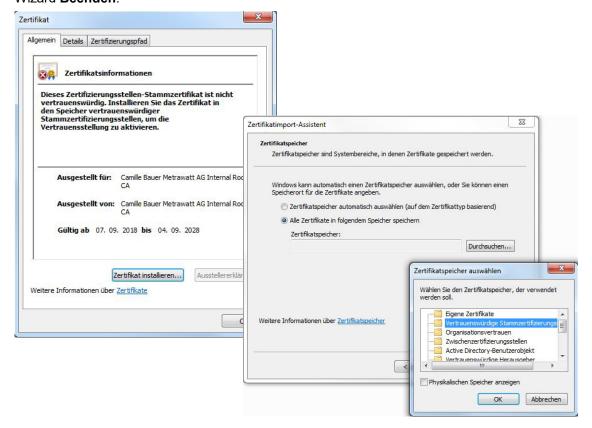
6.9.5 Sichere Kommunikation mit HTTPS


HTTPS stellt eine verschlüsselte Kommunikation mittels TLS (Transport Layer Security) bereit. Diese bidirektionale Verschlüsselung der Kommunikation zwischen Client und Server schützt gegen Abhören und Verfälschen der Kommunikation. HTTPS erzeugt einen sicheren Kanal über ein unsicheres Netzwerk.

Bevor eine HTTPS-Kommunikation verwendet werden kann muss ein Root-Zertifikat installiert werden. Der Anwender kann entweder ein Camille Bauer Zertifikat oder ein eigenes Zertifikat verwenden. Dies kann beim Aktivieren der HTTPS-Kommunikation via *Einstellungen* des *Sicherheitssystems* im Punkt *Web-Sicherheit* ausgewählt werden.

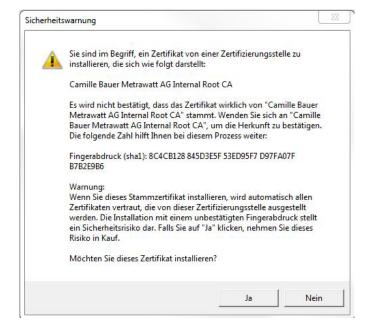
Camille Bauer Zertifikat

Das Zertifikat kann direkt via **Zertifikate und Schlüssel** vom Gerät heruntergeladen werden.

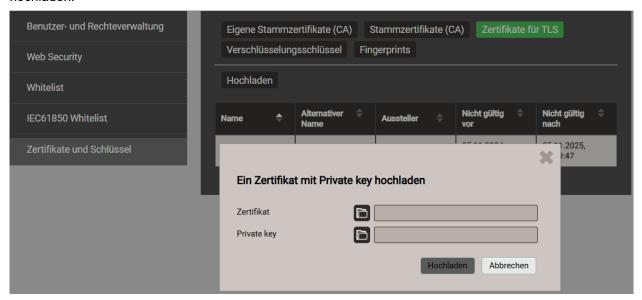


Alternativ kann das Zertifikat auch von der Camille Bauer Webseite bezogen werden:

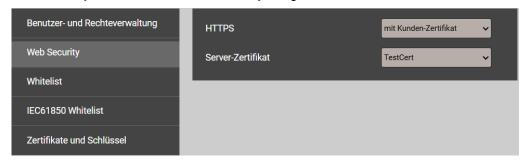
https://www.camillebauer.com/pq5000r-de


Das Zertifikat muss vor dem Starten des Browsers installiert werden.

Sobald das Zertifikat auf den lokalen Rechner heruntergeladen wurde, kann es manuell installiert werden. Einfach auf die Datei doppelklicken. Zertifikat installieren, dann Alle Zertifikate in folgendem Speicher speichern, Durchsuchen und Vertrauenswürdige Stammzertifizierungsstellen wählen. Den Import-Wizard Beenden.


Das importierte Zertifikat ist für alle Geräte der PQ-, AM-, DM- und CU-Reihe gültig.

Der Installation des Zertifikats zustimmen, falls die folgende Sicherheitswarnung erscheint:



Kunden-Zertifikat

Das Kunden-Zertifikat und den privaten Schlüssel via Zertifikate und Schlüssel unter Zertifikate für TLS hochladen.

Das hochgeladene Zertifikat kann dann beim Aktivieren der HTTPS-Kommunikation via *Einstellungen* des *Sicherheitssystems* im Punkt *Web Security* ausgewählt werden.

Eine https-Kommunikation kann man auch nutzen, indem alle Browserwarnungen ignoriert werden und eine **unsichere** Verbindung zum Gerät hergestellt wird. Aus Sicherheitsgründen sollten Sie jedoch in der vorgesehenen Netzwerkumgebung nicht so arbeiten.

6.9.6 Audit log (SYSLOG)

Sicherheitsbezogene Ereignisse, wie ...

- ein Computer stellt eine Verbindung zum Gerät her
- ein Benutzer meldet sich an / ab
- ein gescheiterter Anmelde-Versuch
- jede Änderung der Gerätekonfiguration
- das Anzeigen des Sicherheits-Logs durch einen Benutzer
- USW.

werden in einem Sicherheits-Log gespeichert, auf den über das Service-Menü zugegriffen werden kann.

Beispiel eines Security-Logs: Der Schweregrad jeder Mitteilung wird mit einem Farbcode angezeigt, der auch als Filter-Kriterium dienen kann.

Jeder Eintrag kann, falls aktiviert, auch mittels **SYSLOG**-Protokoll zur Sicherheitsüberwachung auf einen zentralen Log-Server übertragen werden. Diese Übertragung kann basierend auf UDP, TCP oder TLS erfolgen. Die Einstellungen für den Syslog-Server sind via Einstellungen | Kommunikation | Syslog Server verfügbar.

7. Bedienen des Gerätes

7.1 Bedienelemente

Die Bedienung des Gerätes erfolgt mit Hilfe von 6 Tasten.

- ➤ 4 Tasten zur Navigation (◄, ▲, ▼, ►) und für die Selektierung von Werten
- > OK für Auswahl oder Bestätigung
- > ESC für Menüanzeige, Beenden oder Abbruch

Die **Funktion** der Bedientasten kann sich in ausgewählten Messwertanzeigen, bei der Parametrierung und in Service-Funktionen ändern. Bei einem PQ3000 wird die dann gültige Funktion in einem Hilfebalken angezeigt.

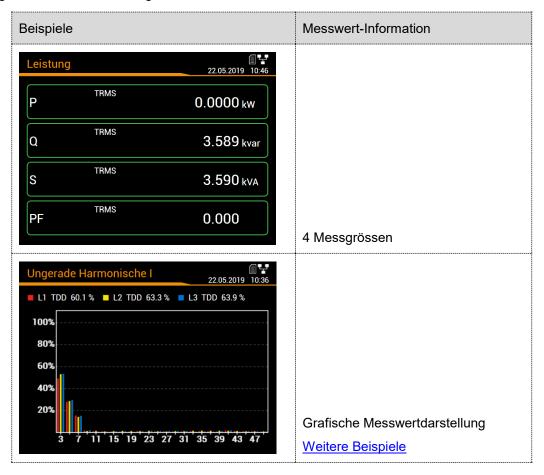
7.2 Auswahl der anzuzeigenden Information

Die Auswahl der Information erfolgt über ein Menü. Die Menüpunkte können Untermenüs enthalten.

Anzeige des Menüs

ESC drücken. Mit jedem Tastendruck wird auf eine, eventuell vorhandene, höhere Menüebene gewechselt.

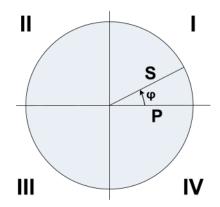
Anzeige von Informationen


Der mit △, ▼ gewählte Menüpunkt kann mit OK selektiert werden. Vorgang in eventuellen Untermenüs wiederholen bis die gewünschte Information angezeigt wird.

Rückkehr in Messwertanzeige

Nach 2 min. ohne Interaktion, wird das Menü automatisch geschlossen und die letzte aktive Messwertanzeige dargestellt.

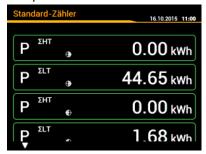
7.3 Messwertanzeigen und verwendete Symbole


Das Gerät benutzt zur Darstellung der Messwertinformation sowohl numerische als auch numerischgrafische Messwertanzeigen.

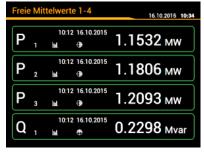
Bezug / Abgabe / induktiv / kapazitiv

Das Gerät stellt Informationen für alle vier Quadranten zur Verfügung. Quadranten werden üblicherweise mit den römischen Zahlen I, II, III und IV, gemäss nebenstehender Grafik, bezeichnet. Je nachdem, ob das gemessene System aus Erzeuger- oder Verbrauchersicht betrachtet wird, ändert sich aber auch die Interpretation der Quadranten: Die Energie welche aus der Wirkleistung in den Quadranten I+IV gebildet wird, kann dann z.B. als gelieferte oder bezogene Wirkenergie angesehen werden.

Um eine unabhängige Interpretation der 4-Quadranten Information zu ermöglichen, werden die Begriffe Bezug, Abgabe sowie induktive oder kapazitive Belastung bei der Anzeige der Daten deshalb vermieden. Sie sind durch die Angabe der Quadranten I, II, III oder IV, eine Kombination derselben, oder eine entsprechende grafische Darstellung ausgedrückt. Die gewünschte Sichtweise kann durch Auswahl des Zählpfeilsystems (Verbraucher oder Erzeuger) in den Einstellungen der Messung festgelegt werden.



Verwendete Symbole


Damit ein Messwert eindeutig beschrieben ist, reichen Kurzbezeichnung (z.B. U_{1N}) und Einheit (z.B. V) oft nicht aus. Einige Messwerte benötigen zusätzliche Informationen, welche mit einem der nachfolgenden Symbole oder einer Kombination mehrerer Symbole dargestellt wird:

Ш	Mittelwert	ΣΗΤ	Zähler (Hochtarif)
M	Mittelwert Trend	ΣLT	Zähler (Niedertarif)
	Bimetallfunktion (Strom)		Maximalwert
\bigoplus	Energie Quadranten I+IV	lacktriangle	Minimalwert
igoplus	Energie Quadranten II+III	TRMS	Echt-Effektivwert
\oplus	Energie Quadranten I+II	RMS	Effektivwert (z.B. nur Grund- oder Oberschwingungsanteil)
\oplus	Energie Quadranten III+IV	(H1)	Nur Grundschwingungsanteil
I,II,III,IV	Quadranten	Ø	Mittelwert (von RMS-Werten)

Beispiele

Zähler mit Tarif- und Quadranten-Information

Freie Mittelwerte, letzte Werte

Freie Mittelwerte, Trend

7.4 Rücksetzen von Messdaten

• **Minimal- und Maximalwerte** können während des Betriebs zurückgesetzt werden können. Das Rücksetzen erfolgt gruppenweise über das Service-Menü:

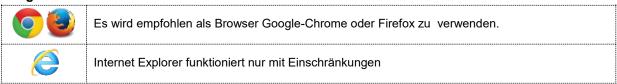
Gruppe	Werte die zurückgesetzt werden
1	Min-/Max-Werte von Spannungen, Strömen und Frequenz
2	Max-Werte von Leistungsgrössen (P,Q,Q(H1),D,S); min. Leistungsfaktoren
3	Max-Werte von gemittelten Leistungsgrössen, Bimetall-Schleppzeigern und freien Mittelwerten
4	Maximalwerte der Oberschwingungsanalyse: THD U/I, TDD I, individuelle Harmonische U/I
5	Alle Unsymmetrie-Maximalwerte Spannung und Strom

- **Zählerstände** können während des Betriebs individuell über das Service-Menü gesetzt oder zurückgesetzt werden.
- Aufgezeichnete Loggerdaten können individuell über das Service-Menü gelöscht werden. Dies macht immer dann Sinn, wenn die Auswahl der aufzuzeichnenden Grössen geändert wurde.

7.5 Konfiguration

7.5.1 Lokale Konfiguration am Gerät

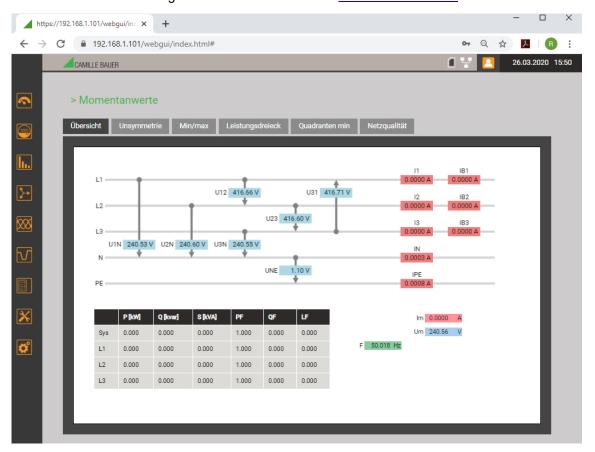
Mit Ausnahme des Sicherheitssystems kann das Gerät vollständig über das Menü Einstellungen konfiguriert werden.

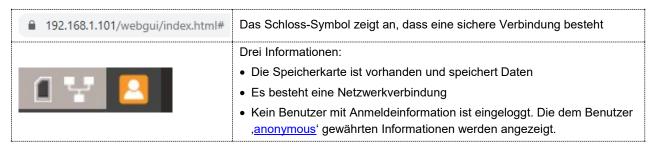

Änderungen werden erst angewendet, wenn die Abfrage "Konfigurations-Änderungen speichern" beim Verlassen des Einstellmenüs vom Anwender akzeptiert wurde. Änderungen im Menü "Land und Uhr" werden unmittelbar übernommen (z.B. andere Benutzersprache), müssen aber trotzdem gespeichert werden.

- Land und Uhr: Anzeigesprache, Datumsformat, Zeitzone, Zeitsynchronisationsquelle, Zeit / Datum
- Anzeige: Auffrischrate und Helligkeit des Displays, Bildschirmschoner
- Kommunikation: Einstellungen der Kommunikations-Schnittstellen <u>Ethernet</u> und <u>Modbus/RTU</u>.
 Zusätzlich kann ein <u>SFTP-Server</u> definiert werden, an den anwenderdefinierte Datenfiles gesendet werden sollen.
- Messung: Anschlussart, Drehrichtung, Nennwerte U/I/f, Abtastung, Zählpfeilsystem Hinweise
 - U / I-Wandler: Das Verhältnis Primär- zu Sekundärwert wird nur für die Umrechnung der gemessenen Sekundär- auf Primärwerte verwendet, so dass z.B. 100 / 5 gleichwertig mit 20 / 1 ist. Die Werte haben keinen Einfluss auf das Anzeigeformat der Messwerte.
 - Nennspannung: Wird als 100%-Wert für die Überwachung von Netzqualitätsereignissen verwendet und entspricht der vereinbarten Spannung U_{din} gemäss IEC 61000-4-30
 - Nennstrom: Nennwert für den die Anlage dimensioniert ist
 - Maximaler Bedarfsstrom: Bezugswert für die Skalierung des Oberschwingungsanteils TDD der Ströme
 - Maximaler Kurzschlusstrom: Wird für die Bestimmung der Grenzwerte für Stromoberschwingungen und TDD bei der Bewertung der Konformität zur IEEE 519 verwendet
 - Maximale Primärwerte U/I: Diese Werte werden nur für die Festlegung des Anzeigeformats der Messwerte verwendet. So kann z.B. die Auflösung der Anzeigewerte optimiert werden, da keine Abhängigkeit zu installierten Wandlern besteht.
 - Synchrone Abtastung: ja=die Abtastung wird an die gemessene Netzfrequenz angepasst, so dass die Anzahl der Abtastwerte pro Netzperiode konstant bleibt; nein=die Abtastung erfolgt konstant basierend auf der eingegebenen Nennfrequenz
 - Referenzkanal: Die Messung der Netzfrequenz erfolgt über den ausgewählten Spannungskanal
 - Spannung Neutral-Erde / Neutralleiterstrom: Diese Grössen können gemessen oder berechnet werden. Bei Wahl von «gemessen» müssen die entsprechenden Anschlüsse natürlich angeschlossen sein.
- Netzqualität: Definition der Parameter zur Überwachung der PQ-Ereignisse Spannungseinbruch, Spannungsunterbruch, Spannungsüberhöhung, Schnelle Spannungsänderung (RVC), Spannungs-Unsymmetrie, Überstrom, Frequenzereignis und Signalspannung. Es können auch benutzerdefinierte Grenzwerte für die Bewertung der PQ-Statistik gesetzt werden.
- **Mittelwerte | Standardgrössen**: Intervallzeit und Synchronisationsquelle für die vordefinierten Leistungsmittelwerte
- **Mittelwerte** | **Freie definierte Grössen**: Bis zu 12 Grössen (10 vordefiniert, 2 selektierbar) für die Bildung von Mittelwerten und Auswahl einer gemeinsamen Intervallzeit und Synchronisationsquelle
- **Bimetallstrom**: Auswahl der Einstellzeit für die Bestimmung des <u>Bimetallstroms</u>
- Zähler | Standard-Zähler: Tarifumschaltung EIN/AUS, Zählerskalierung
- Zähler | Frei definierte Zähler: Basisgrössen (Px,Qx,Q(H1)x,Sx,Ix), Tarifumschaltung EIN/AUS, Zählerskalierung
- Zähler | Zählerlogger: Auswahl des Ableseintervalls
- Grenzwerte: Auswahl der zu überwachenden Grösse für bis zu 12 Grenzwerte, Grenzen EIN/AUS, Ereignistext ¹⁾
- **Digitaleingänge**: Entprellzeit (minimale Pulsbreite) und Polarität der optionalen <u>Digitaleingänge</u>
- **Überwachungsfunktionen**: Bis zu 8 <u>Überwachungsfunktionen</u> mit bis zu drei Eingängen, Ansprechund Abfallverzögerung und Ereignistext ¹⁾

- **Sammelalarm**: Auswahl der Überwachungsfunktionen, welche für den <u>Sammelalarm</u> verwendet werden und Auswahl einer möglichen Quelle für das Rücksetzen
- Betriebsstunden: Auswahl der Laufbedingung für bis zu 3 Betriebsstundenzähler
- Digitalausgang: Definition der Zustandsquelle für den optionalen <u>Digitalausgang</u>
- Analogausgänge: Ausgangsart, Quelle, Übertragungsverhalten, Obere/untere Begrenzung
- Sicherheitssystem: Definition des <u>Sicherheitssystems</u> (RBAC, https, Whitelist)
- **Gerätebeschreibung**: Eingabe verschiedener Texte ¹⁾, welche hauptsächlich für die Berichtserstellung verwendet werden, z.B. Device tag, Dokumenttitel, Gerätestandort und mehr. Hinweis: Nur die Zeichen 'a'…'z', 'A'…'z' und '0'…'9' können verwendet werden.
- Datenexport-Scheduler: Über die lokale Konfiguration k\u00f6nnen Tasks freigegeben oder gesperrt werden, welche vorher via <u>Webseite</u> definiert wurden. Solche Aufgaben erzeugen Datenfiles, welche an einen SFTP-Server gesendet und/oder lokal gespeichert werden.
- ¹⁾ In anwenderdefinierten Ereignis- und Beschreibungstexten sind alle Unicode-Zeichen (UTF8) zulässig, mit Ausnahme der folgenden:
 - ASCII-Steuerzeichen (0x00 0x1F)
 - Das Anführungszeichen " (0x22)
 - Das Zeichen & (0x26)
 - Das Hochkomma ' (0x27)
 - Der Stern * (0x2A)
 - Der Slash / (0x2F)
 - Der Doppelpunkt : (0x3A)
 - Das «kleiner als» Zeichen < (0x3C)
 - Das «grösser als» Zeichen > (0x3E)
 - Das Fragezeichen ? (0x3F)
 - Der Backslash \ (0x5C)
 - Der senkrechte Strich | (0x7C)

Am Gerät selbst können aber nur 'normale Zeichen' aus dem ASCII-Zeichensatz eingegeben werden. Die Eingabe sprachspezifischer Zeichen und Texte ist nur über die Webseite des Gerätes möglich.


7.5.2 Konfiguration via Webbrowser


Sobald das Root-Zertifikat installiert ist, kann der Browser gestartet und die Geräte-Webseite angezeigt werden:

- IPv4-Kommunikation: https://IPv4_addr, z.B. https://192.168.1.101
- IPv6-Kommunikation: https://[IPv6 addr], z.B. https://[fd2d:bb44:97f1:3976::1]

Damit das funktioniert, müssen PC und Gerät im gleichen Netz sein. Abhängig von der Geräteausführung, können mehrere Netzwerkgeräte mit unterschiedlichen Default IP-Adressen vorhanden sein.



Geräte-Webseite bei Verwendung von Google Chrome

Via WEB-GUI können unter Verwendung des Menüs Einstellungen dieselben Einstellungen vorgenommen werden, wie über das <u>lokale GUI</u>. Zusätzlich können das <u>Sicherheitssystem</u> und der <u>Datenexport-Scheduler</u> eingestellt und anwenderdefinierte Ereignis- oder Beschreibungstexte im UTF8-Format eingegeben werden.

Falls diese Abfrage nicht bestätigt wird, können nicht gespeicherte Änderungen der aktuellen Konfiguration verloren gehen.

Laden / Speichern von Konfigurationsdateien

Die im Gerät gespeicherte Konfiguration kann vom Anwender auf einen Datenträger gespeichert und von dort auch wieder geladen werden. Der Ablauf des Speicher- bzw. Ladevorgang kann je nach Browser unterschiedlich sein.

Die Einstellungen des Sicherheitssystems sind nicht Teil der Konfigurationsdatei. Es gibt keine Möglichkeit Sicherheitseinstellungen von einem Gerät zu einem anderen zu transferieren.

Laden einer Konfigurationsdatei von einem Datenträger

Die Konfigurationsdaten der ausgewählten Datei werden direkt ins Gerät geladen und die Werte im WEB-GUI entsprechend aktualisiert. Normalerweise unterscheiden sich die Geräte bezüglich Netzwerk- bzw. Modbus-Einstellungen und Geräte-Bezeichnung. Deshalb kann beim Laden der Datei angegeben werden, ob die entsprechenden Einstellungen des Gerätes beibehalten oder mit den Werten der zu ladenden Datei überschrieben werden sollen.

Speichern der aktuellen Einstellungen des WEB-GUIs ins Gerät

Speichern der Geräte-Konfiguration auf einen Datenträger

Achtung: Im WEB-GUI vorgenommene Änderungen der Einstellungen, welche noch nicht im Gerät gespeichert wurden, werden nicht auf den Datenträger geschrieben.

7.6 PQ-Überwachung

Die Netzqualitäts-Überwachung liefert sowohl eine statistische Auswertung, welche eine Bewertung der Einhaltung von Normen (z.B. EN 50160) oder Lieferverträgen erlaubt, als auch Aufzeichnungen von Netzereignissen (z.B. Spannungseinbruch), um deren Ursachen und Folgen analysieren zu können. Über die Webseite des Gerätes können auch direkt Konformitätsberichte erstellt werden.

7.6.1 PQ-Ereignisse

Das Gerät überwacht die Spannungsereignisse gemäss IEC 61000-4-30. Im Auslieferungszustand sind die Ansprechschwellen auf die Werte der EN50160 für ein Niederspannungs-Verbundnetz gesetzt, können aber vom Anwender auf seine Bedürfnisse angepasst werden.

Zusätzlich zu den Anforderungen der IEC 61000-4-30 kann das Gerät Stromüberhöhungen, Spannungsunsymmetrie und Frequenzabweichungen überwachen.

Überwachte Ereignisse	Ansprechschwelle	Hysterese	Bezugswert	
Spannungseinbruch	90%	2%		
Spannungsunterbruch	10%	2%		
Spannungsüberhöhung	110%	2%	Nennspannung	
Schnelle Spannungsänderung (RVC)	6%	50% ¹⁾		
Homopolare Spannung	50%	2%		
Stromüberhöhung	120%	2%	Nennstrom	
Frequenz-Anomalie	untere: 99% obere: 101%	0.5%	Nennfrequenz	
Digitaleingang-Ereignisse ²⁾	Jede Zustandsänderung			

¹⁾ Bezogen auf die entsprechende Ansprechschwelle

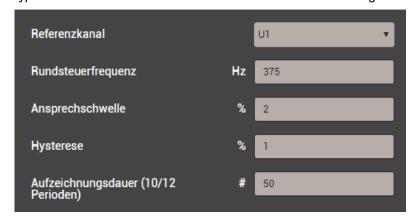
²⁾ Für Geräteversionen mit Digitaleingängen, werden auch die Zustände dieser Eingänge während des Ereignisses angezeigt. Zustandsänderungen von Digitaleingängen können auch eine Ereignisaufzeichnung auslösen.

Das Gerät überprüft die vom Anwender definierten Werte nicht. Falls diese nicht plausibel sind, können Ereignisse eventuell nicht korrekt erkannt oder falsch klassifiziert werden. Insbesondere sollte die Ansprechschwelle für RVC-Ereignisse nicht grösser als die Hälfte der Differenz der Ansprechschwellen von Spannungsüberhöhung und Spannungseinbruch sein.

Aufzeichnungen

Falls eines der obigen Ereignisse auftritt, zeichnet das Gerät sowohl die jede Halbperiode aktualisierten RMS-Werte als auch die Abtastwerte für alle Spannungs- und Stromkanäle auf. Die Aufzeichnungszeiten können via Einstellungen | Netzqualität | Ereignisaufzeichnung eingestellt werden.

Mögliche Aufzeichnungszeiten


≤1.0s ≤180.0s ≤1.0s ≤5.0s

Hinweis: Die Ereignisaufzeichnungszeit "RMS(1/2): Nach Auslösung" ist eine maximale Aufzeichnungsdauer. Sie wird auf die effektive Ereignisdauer + 1s reduziert, falls die Ereignisdauer kürzer ist als die konfigurierte Zeit.

Erfasste PQ-Ereignisse können über das lokale Display oder die Webseite des Gerätes <u>visualisiert</u> werden.

Signalspannungen

Das Gerät überwacht Signalspannungen, welche zu Steuerzwecken über das Netz übertragen werden, und zeichnet diese als Ereignisse auf. Typischerweise sind dies Rundsteuersignale. Der Anwender kann die Frequenz der Signalspannung, die Ansprechschwelle und Hysterese (bezogen auf die Nennspannung) sowie die Aufzeichnungsdauer in Vielfachen der Erfassungsperiode von 10/12 Perioden festlegen. Die Aufzeichnungsdauer darf 120s nicht überschreiten. Die Rundsteuerfrequenz liegt typischerweise unterhalb 3 kHz und kann beim lokalen Energiedienstleister nachgefragt werden.

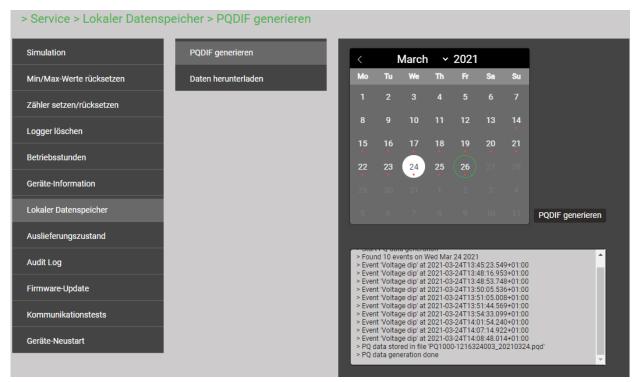
7.6.2 PQ-Statistik

Die Netzqualität wird durch einen Vergleich der vom Gerät gemessenen PQ-Parameter mit vertraglich vereinbarten Grenzwerten bestimmt. Der Bewertungs-Zeitraum beträgt normalerweise mindestens eine Woche, um auch die Variationen zwischen Wochentagen und Wochenenden zu berücksichtigen.

Das Gerät kann über die Webseite eine Bewertung der gemessenen PQ-Parametern nach folgenden Normen vornehmen:

- EN 50160 (2010), Niederspannung, Verbundnetz
- EN 50160 (2010), Niederspannung, Inselnetz
- EN 50160 (2010), Mittelspannung, Verbundnetz
- EN 50160 (2010), Mittelspannung, Inselnetz
- EN 50160 (2010), Hochspannung, Verbundnetz
- EN 50160 (2010), Hochspannung, Inselnetz
- IEC 61000-2-2 (2002), öffentliche Niederspannungsnetze
- IEC 61000-2-4 (2002), industrielle und nicht öffentliche Netze bis 35kV, Klasse 1
- IEC 61000-2-4 (2002), industrielle und nicht öffentliche Netze bis 35kV, Klasse 2
- IEC 61000-2-4 (2002), industrielle und nicht öffentliche Netze bis 35kV, Klasse 3
- IEC 61000-2-12 (2003), öffentliche Mittelspannungsnetze
- GB/T
- IEEE 519
- Anwenderspezifische Grenzwertsätze

Die Auswertung der PQ-Statistik ist im Kapitel <u>Datenaufzeichnung | PQ-Statistik</u> gezeigt, insbesondere auch die Erzeugung von Konformitätsberichten.


Erfasste PQ-Parametergruppen

Messgrösse	Erfassungsintervall	Angewendete Grenzwerte
Netzfrequenz	10 s	Die angewendeten Grenzwerte und
Spannungsänderungen	10 min.	Zeitbedingungen der voreingestellten Normen
Flicker P _{st}	10 min.	sind über die Webseite des Gerätes ersichtlich. Sie können über das folgende Menü angezeigt
Flicker P _{lt}	2 h	werden:
Signalübertragungs-Spannungen	3 s	Einstellungen
Unsymmetrie der Netzspannung	10 min.	Netzqualität
THDS der Netzspannungen	10 min.	Benutzerdef. Grenzwerte (Norm)
Spannungs-Harmonische	10 min.	
Spannungs-Interharmonische	10 min.	Im gleichen Menü können auch benutzerspezifische Datensätze mit
Stromänderungen	10 min.	anzuwendenden Grenzwerten und
Strom-Unsymmetrie	10 min.	Auswertebedingungen definiert werden.
Strom-Harmonische	10 min.	Benutzerspezifische Datensätze können
Strom-Interharmonische	10 min.	auch wieder gelöscht werden.

7.6.3 Bereitstellung von PQ-Daten

PQ-relevante Daten wie Netzqualitätsereignisse oder Netzqualitätsstatistiken können vom Gerät im Standard-Format PQDIF nach IEEE 1159.3 erzeugt werden. Die automatische oder ereignisgesteuerte Erzeugung solcher Dateien kann im <u>Datenexport-Scheduler</u> im Einstellmenü definiert werden. Als Voreinstellung werden tägliche PQDIF periodisch nach Mitternacht für den vergangenen Tag erstellt und in einer hierarchischen Zeitstruktur (Jahr, Monat, Tag) zum <u>Download</u> bereitgestellt.

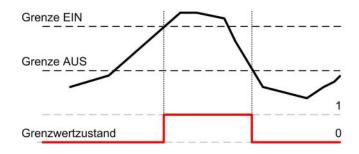
PQDIF-Dateien können über das Web-Interface auch manuell erzeugt werden. Dies ist sowohl für den laufenden Tag (Daten seit Mitternacht) oder zusammenhängende, auswählbare Zeitbereiche bis 7 Tage möglich. Die Datei(en) wird in der Zeitstruktur jeweils im Endtag eingefügt. Für Daten die mit einem roten Punkt versehen sind, existieren bereits Dateien.

Falls für den gewählten Zeitbereich bereits PQDIF-Dateien im Gerät gespeichert sind, wird untenstehende Warnung angezeigt:

7.7 Alarmierung

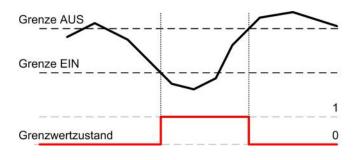
Das Gerät unterstützt ein von den Netzqualitätsereignissen unabhängiges Alarmierungskonzept. Je nach Anforderungen des Anwenders können einfache oder anspruchsvollere Überwachungsaufgaben realisiert werden. Die wichtigsten Elemente sind Grenzwerte auf Basismessgrössen, Überwachungsfunktionen und der Sammelalarm.

7.7.1 Grenzwerte auf Basismessgrössen



Mit Grenzwerten kann entweder die Überschreitung eines Wertes (oberer Grenzwert) oder die Unterschreitung eines Wertes (unterer Grenzwert) überwacht werden.

Grenzwerte werden mit Hilfe von zwei Parametern definiert: Grenze für EIN / AUS. Die Hysterese entspricht der Differenz zwischen Ein- und Ausschaltgrenze.


Die beiden Zustandsübergänge AUS→EIN und EIN→AUS können als Ereignis oder Alarm in die entsprechenden Listen eingetragen werden.

Oberer Grenzwert: Grenze für EIN ≥ Grenze für AUS

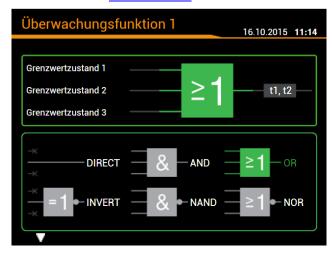
- Der Grenzwert wird aktiv (1), sobald die Einschaltgrenze überschritten wird. Er bleibt so lange aktiv, bis der zugehörige Messwert wieder unter die Ausschaltgrenze absinkt.
- Der Grenzwert ist inaktiv (0), falls entweder die Einschaltgrenze noch nicht erreicht ist oder falls nach dem Ansprechen des Grenzwertes der zugehörige Messwert wieder unter die Ausschaltgrenze fällt.

Unterer Grenzwert: Grenze für EIN < Grenze für AUS

- Der Grenzwert wird aktiv (1), sobald die Einschaltgrenze unterschritten wird. Er bleibt so lange aktiv, bis der zugehörige Messwert wieder die Ausschaltgrenze überschreitet.
- Der Grenzwert ist inaktiv (0), falls der Wert höher ist als die Einschaltgrenze oder falls nach dem Ansprechen des Grenzwertes der zugehörige Messwert wieder über die Ausschaltgrenze steigt.

Falls die Grenze für EIN gleich wie die Grenze für AUS gesetzt ist, wird der Grenzwert als oberer Grenzwert ohne Hysterese behandelt.

Grenzwertzustände können:


- ... als Logikeingang für eine <u>Überwachungsfunktion</u> verwendet werden
- ... bei Änderung als Ereignis oder Alarm in die entsprechenden Listen eingetragen werden

7.7.2 Überwachungsfunktionen

Mit Hilfe von Überwachungsfunktionen kann der Anwender eine erweiterte Zustandsüberwachung definieren, um z.B. einen Überstrom-Alarm auszulösen, falls einer der Phasenströme einen Grenzwert überschreitet.

Die Zustände der Überwachungsfunktionen

- ... werden in der Alarmliste angezeigt (via Hauptmenü "Ereignis")
- ... bilden den Sammelalarm-Zustand

Logikeingänge

Bis zu drei Zustände von Grenzwerten, von Digitaleingängen oder anderen Überwachungsfunktionen. Nicht benutzte Eingänge werden automatisch so initialisiert, dass sie den Ausgang nicht beeinflussen.

Logikfunktion

Als Verknüpfungs-Funktionen können AND, NAND, OR, NOR, DIRECT und INVERT gewählt werden. Diese logischen Funktionen sind im Anhang C beschrieben.

Verzögerung EIN

So lange muss die Bedingung stabil bleiben, bis sie weitergeleitet wird

Verzögerung AUS

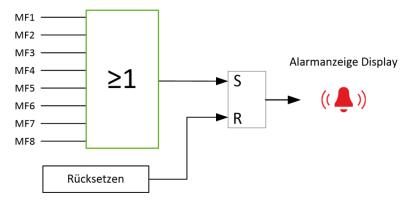
Wartezeit bis eine Bedingung, welche nicht mehr besteht, wieder freigegeben wird.

Beschreibung

Dieser Text wird für die Visualisierung in der Alarmliste verwendet

Listeneintrag

- Alarm / Ereignis: Jede Zustandsänderung wird in die entsprechenden Liste eingetragen
- Keine: Keine Aufzeichnung von Zustandsänderung


Mögliche Folgeoperationen

- · Visualisierung des aktuellen Zustandes in der Alarmliste
- Kombination der Zustände aller Überwachungsfunktionen zu einem Sammelalarm
- Zustandsänderungen als Ereignis oder Alarm in die entsprechenden Listen eintragen

7.7.3 Sammelalarm

Der Sammelalarm kombiniert die Zustände aller Überwachungsfunktionen MFx zu einem übergeordneten Alarm-Zustand des Gesamtgerätes. Für jede Überwachungsfunktion kann gewählt werden, ob sie für den Sammelalarm berücksichtigt werden soll. Falls sich mindestens eine der berücksichtigten Funktionen im Alarmzustand befindet, so ist auch der Sammelalarm im Alarmzustand.

Bei vorhandener (optionaler) Fehlerstrom-Überwachung aktiviert das Erkennen eines Alarmzustandes oder eines Bruchs der Messleitung (nur bei Eingang 2mA) direkt den Sammelalarm.

Das in der Statusleiste angeordnete Symbol signalisiert, ob Alarme aktiv sind oder nicht.

Quittierung: Durch die Quittierung des Sammelalarms bestätigt der Anwender, dass er das Auftreten eines Alarms zur Kenntnis genommen hat. Die Quittierung erfolgt automatisch, sobald der Anwender die Alarmliste auf dem Display oder via Webbrowser zur Anzeige bringt oder wenn der Alarmzustand nicht mehr besteht. Mit der Quittierung wird nur das Blinken der Alarmanzeige beendet, das Symbol selbst bleibt so lange statisch angezeigt, bis sich keine der Überwachungsfunktionen mehr im Alarm-Zustand befindet.

Alarmstatus-Anzeige (via Menü Ereignisse | Alarme)

Diese Anzeige dient dazu die Quelle des Summenalarms zu identifizieren.

7.8 Datenaufzeichnung

Der Datenlogger ermöglicht Langzeit-Aufzeichnungen von Messwertverläufen, Ereignissen und PQ-Statistiken. Einige dieser Aufzeichnungen haben vordefinierten, andere anwenderdefinierten Inhalt.

Zusätzlich kann dateibasierende Information periodisch mit dem <u>Datenexport-Scheduler</u> erzeugt werden. Diese Daten können intern gespeichert und / oder sicher an einen SFTP-Server gesendet werden.

Aufzeichnungen werden generell im Endlos-Modus gemacht. Die ältesten Daten werden gelöscht, sobald der zugeordnete Speicherbereich zu mehr als 80% belegt ist.

Gruppe	Art der Daten	Abfrage		
Periodische Daten	 Zeitliche Verläufe von Mittelwerten, vordefinierte (5) und anwenderdefinierte (12) Grössen Periodische Zählerablesungen, vordefinierte (4) und anwenderdefinierte (12) Grössen 	Energie	MittelwertloggerZählerlogger	
<u>Ereignisse</u>	 In Form eines Logbuches mit Zeitinformation: Ereignisliste: Ansprechen / Abfallen von Überwachungsfunktionen oder Grenzwerten, welche als Ereignis klassifiziert sind Alarmliste: Ansprechen / Abfallen von Überwachungsfunktionen oder Grenzwerten, welche als Alarm klassifiziert sind 	Ereignisse	Alarm- und Ereignisliste	
PQ-Ereignisse	Das Auftreten von PQ-Ereignissen wird in die Liste der PQ-Ereignisse eingetragen. Durch Auswahl der Einträge von Spannungsereignissen kann: • der RMS-Verlauf aller U/I • die Kurvenform aller U/I während der Störung angezeigt werden	Ereignisse	PQ-Ereignisse und Signalspannungen	
Sicherheits- Ereignisse	Sicherheits-Log (SYSLOG)	Service	Log des Sicherheitssystems	
PQ-Statistik	Für ein wählbares Wochenintervall wird die Auswertung der PQ-Statistik, abhängig von der ausgewählten Norm angezeigt. Zusätzlich können Tagestrends überwachter PQ-Variablen angezeigt werden. Mit Hilfe des PQ-Easy Reports können Konformitäts-Berichte direkt über die Webseite erzeugt werden.			

7.8.1 Periodische Daten

Konfiguration der periodischen Datenaufzeichnung

Der Anwender kann über das Einstellmenü individuell konfigurieren:

- Das Mittelungs-Intervall der Standard-Mittelwerte P(I+IV), P(II+III), Q(I+II), Q (III+IV), S
- Das Mittelungs-Intervall von bis zu 12 anwenderdefinierten Mittelwerten
- Das Ableseintervall der Standard-Zähler P(I+IV), P(II+III), Q(I+II), Q (III+IV)
- Das Ableseintervall von bis zu 12 anwenderdefinierten Zählern

Die periodische Aufzeichnung aller konfigurierten Mittelwerte und Zähler wird automatisch gestartet. Die Speicherung der Mittelwerte erfolgt im Takt der entsprechenden Mittelungsintervalle.

Anzeige des zeitlichen Verlaufs von Mittelwerten

Mittelwert-Verläufe sind im Menü Energie abgelegt und in zwei Gruppen unterteilt:

- Voreingestellte Leistungsmittelwerte
- Benutzerdefinierte Mittelwerte

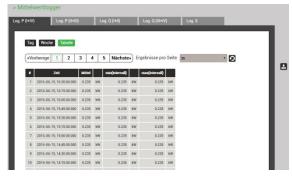
Auswahl der Mittelwert-Logger Gruppe

Die anzuzeigende Mittelwertgrösse kann über die Auswahl des entsprechenden Registers vorgenommen werden. Es werden drei unterschiedliche Darstellungen unterstützt:

- Tagesprofile: Es werden Stundenmittelwerte dargestellt, unabhängig von der tatsächlichen Mittelungszeit
- Wochenprofile
- Tabelle: Auflistung aller erfassten Mittelwerte im Takt der effektiven Mittelungszeit

Die grafische Darstellung erlaubt den direkten Vergleich mit den Werten des Vortages bzw. der Vorwoche.

Durch Auswahl der Anzeigebalken können die zugehörigen Werte abgelesen werden:

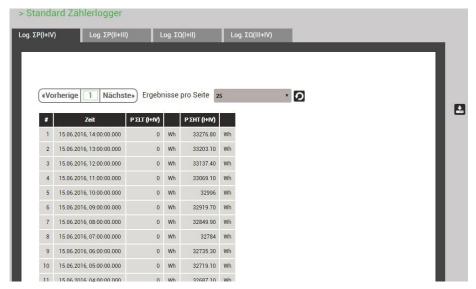

- Mittelwert
- Min. RMS-Werte innerhalb des Intervalls
- Max. RMS-Wert innerhalb des Intervalls

Wochendarstellung

Wochendarstellung: Ablesung

Tabellarische Darstellung der Mittelwerte

Anzeige des zeitlichen Verlaufs von Zählerwerten


Zähler-Verläufe sind im Menü **Energie** abgelegt und in zwei Gruppen unterteilt:

- Standard-Zähler
- Benutzerdefinierte Zähler

Aus der Differenz der aufgezeichneten Zählerablesungen lässt sich der Energieverbrauch für den zugehörigen Zeitabschnitt ermitteln.

PM 1002617 000 03

Tabellarische Darstellung der Zählerstands-Ablesungen

Datenanzeige auf dem lokalen Display

Die Auswahl funktioniert prinzipiell gleich wie beim WEB-GUI. Es bestehen die folgenden Unterschiede:

- Die einzelnen Messgrössen bei den Mittelwert-Verläufen sind in einer Anzeige-Matrix angeordnet, welche via Navigation ausgewählt werden können
- Die Anzahl der anzeigbaren Zählerablesungen ist auf 25 beschränkt
- Der Zeitbereich bei den Mittelwerten ist auf den aktuellen Tag bzw. die aktuelle Woche beschränkt. Es besteht keine Möglichkeit zur Navigation

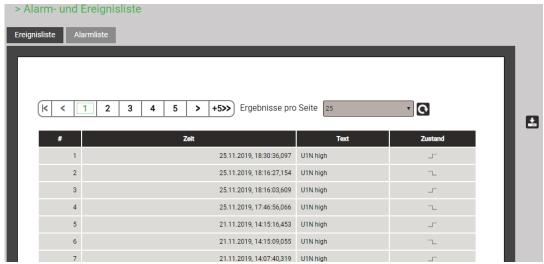
Manueller Datenexport als CSV-Datei

Via kann der Zeitbereich für die zu exportierenden Daten ausgewählt werden. Es wird eine CSV (Comma Separated Value) Datei erzeugt. Bei der Erstellung werden die <u>CSV-Einstellungen</u> des Datenexporters verwendet. CSV-Dateien können zum Beispiel als Textdatei in Excel importiert werden.

In derselben Datei sind jeweils die Daten für alle Grössen der entsprechenden Gruppen enthalten.

7.8.2 Ereignisse

Konfiguration der Ereignisse


- Für alle <u>Überwachungsfunktionen</u> und <u>Grenzwerte</u> deren Ansprechen / Abfallen registriert werden soll, muss der Parameter "Listeneintrag" auf Ereignisse oder Alarme gesetzt werden
- Ansprechschwellen von PQ-Ereignissen können über Einstellungen | Netzqualität angepasst werden

Anzeige von Ereigniseinträgen

Ereignisse sind in Form eines Logbuches aufgebaut. Das Auftreten überwachter Ereignisse wird mit der Zeit des Auftretens in die entsprechenden Listen eingetragen. Folgende Listen werden unterschieden:

- Alarm- und Ereignisliste
- PQ-Ereignisse (siehe 7.8.4)
- Log des Sicherheitssystems

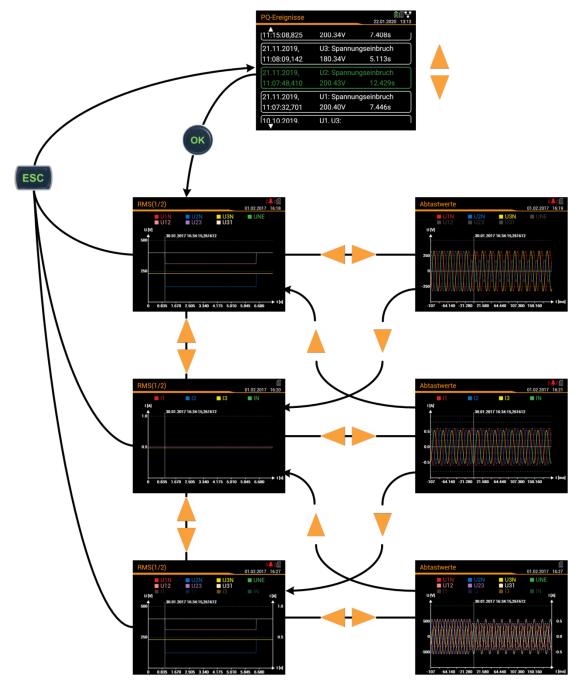
Beispiel einer Ereignisliste

Ereignisanzeige auf dem lokalen Display

Die Auswahl funktioniert prinzipiell gleich wie beim WEB-GUI. Es besteht folgender Unterschied:

• Die Anzahl der anzeigbaren Ereignisse ist auf 25 beschränkt

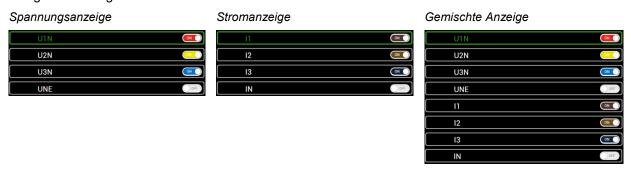
7.8.3 PQ-Ereignisse


Konfiguration der aufzuzeichnenden Ereignisse

Siehe 7.6

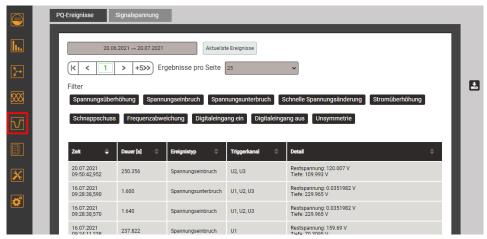
Anzeige von PQ-Ereignisaufzeichnungen (lokal)

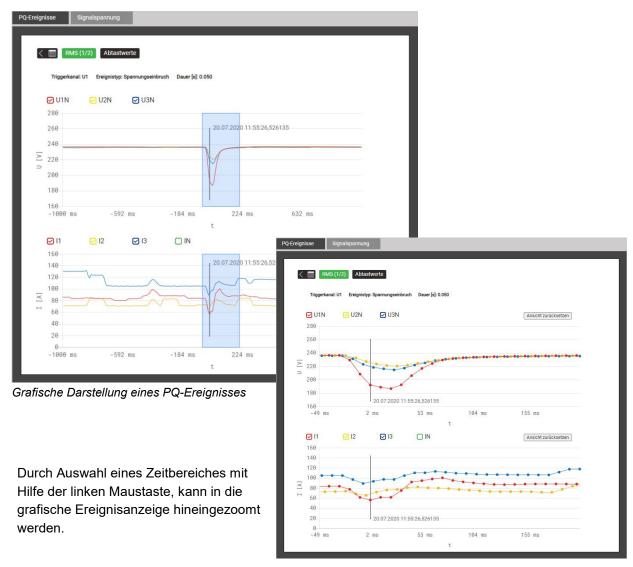
Aufgezeichnete Ereignisse sind in Form eines Logbuches verfügbar, wobei Signalspannungs-Ereignisse in einer separaten Liste abgelegt sind. Sie sind mit der Zeit des Auftretens, der Restspannung und der Dauer in der PQ-Ereignisliste eingetragen. Durch Auswahl eines Listeneintrages gelangt man in die grafische Anzeige der Messwertverläufe während des Ereignisses. Folgende Darstellungen werden unterstützt:


- Halbperioden RMS-Verlauf aller Spannung, aller Ströme, aller Spannungen und Ströme
- Kurvenform aller Spannung, aller Ströme, aller Spannungen und Ströme
- Zustandsänderungen von Digitaleingängen (nur für Geräteversionen mit Digitaleingängen)

Anzeigematrix auf dem lokalen Display

Einschränkung der angezeigten Werte auf dem lokalen Display

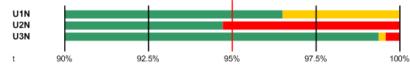

Die dargestellte Information kann vom Anwender an seine Bedürfnisse angepasst werden. Bei angezeigter Grafik können nach Auswahl von <OK> in einem Einstellfenster die anzuzeigenden Messgrössen ausgewählt werden.


Anzeige von PQ-Ereignissen (WEB-GUI)

Wie beim lokalen GUI sind die aufgezeichneten Ereignisse in Form eines Logbuches verfügbar. Die Ereignisse können nach Ereignistyp und Ereignisdatum gefiltert werden.

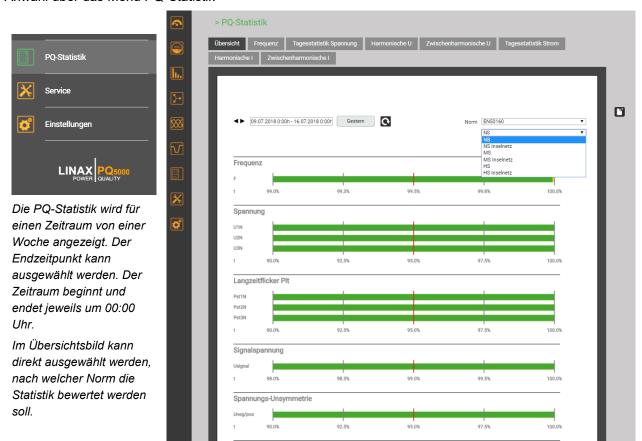
Durch Auswahl eines Listeneintrages gelangt man in die grafische Anzeige der zugehörigen Messwertverläufe während des Ereignisses.

Liste der PQ-Ereignisse


Vergrössertes PQ-Ereignis

7.8.4 PQ-Statistik

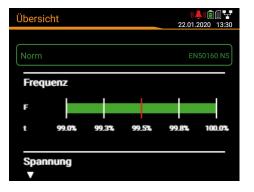
Aus der PQ-Statistik Übersicht ist sehr einfach ersichtlich, ob die Grenzwerte der <u>überwachten Kriterien</u> eingehalten werden oder nicht. Jedes Kriterium wird mit einem Balken dargestellt, welcher sich aus mehreren Farbkomponenten zusammensetzen kann:


Beispiel für die Überwachung von Spannungsänderungen:

- Zu erfüllender Grenzwert ist mit einem roten Strich markiert (95% der Gesamtzeit)
- U1N: Anforderung erfüllt, da grüner Balken > 95%
- U2N: Anforderung nicht erfüllt, da grüner Balken < 95%
- U3N: Anforderung erfüllt, da grüner Balken > 95%

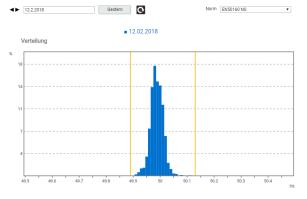
Anzeige der PQ-Statistik Übersicht (WEB-GUI)

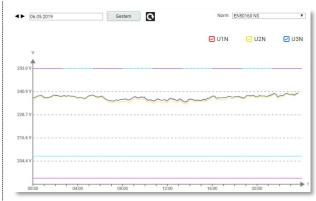
Anwahl über das Menü PQ-Statistik


Anzeige der PQ-Statistik Übersicht (lokal)

Anwahl über das Hauptmenü | PQ-Statistik

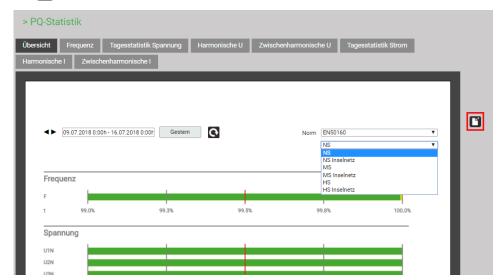
Die PQ-Statistik wird immer für die vergangenen sieben Tage angezeigt. Ein anderer Zeitbereich kann nicht ausgewählt werden.

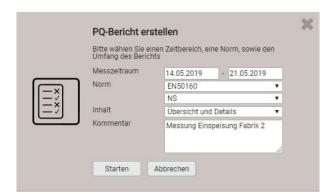

Die Norm für die Bewertung der Statistik kann durch Anwahl des Eintrags "Norm" geändert werden.


Anzeige von Details der PQ-Statistik

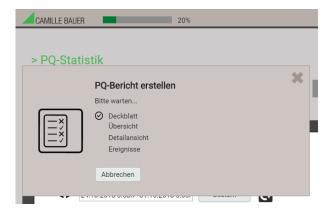
Für die aufgezeichneten PQ-Grössen können Details auf Tagesbasis angezeigt werden. Auf dem lokalen Display ist diese Anzeigemöglichkeit auf den vergangenen Tag eingeschränkt.

 Frequenz	Tagesstatistik U	Harmonische U	Interharmonische U	Tagesstatistik I	Harmonische I	Interharm. I
 Verteilung	Spannung	Harmonische U1x	Interharm. U1x	Strom	Harmonische I1	Interharm. I1
Tagesstatistik	Flicker Pst	Harmonische U2x	Interharm. U2x	I-Unsymm.	Harmonische I2	Interharm. I2
	Flicker Plt	Harmonische U3x	Interharm. U3x	TDD I	Harmonische I3	Interharm. I3
	U-Unsymm.					
	THD U					


Statistische Verteilung der 10-s Frequenzwerte


Verlauf der 10-min Spannungswerte

Erstellen eines Konformitätsberichtes via Web-Seite des Gerätes - PQ-Easy Report


Via La kann ein Konformitätsbericht im PDF-Format erstellt werden.

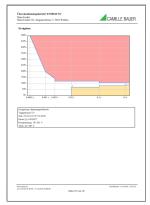
- 1. Auswertezeitraum wählen: Mindestens 1 Woche
- Norm auswählen deren Konformität bewertet werden soll
- 3. Umfang des Berichtes wählen (3 Stufen)
- 4. Kommentar eingeben, der auf der ersten Seite des Berichts angezeigt wird
- 5. Berichtserstellung starten...

Während der Berichtserstellung wird am oberen Bildschirmrand eine Fortschrittsanzeige angezeigt. Die Dauer für die Erstellung hängt vom gewählten Berichtsumfang, dem Auswertezeitraum und der Anzahl der erfassten PQ-Ereignisse ab.

Der erstellte Bericht kann heruntergeladen werden.

Je nach verwendetem Browser und dessen Einstellungen, kann entweder gewählt werden wo die Datei gespeichert werden soll oder der Bericht wird ins Standard-Downloadverzeichnis gespeichert.

Beispiel eines Konformitätsberichtes


a) Übersicht

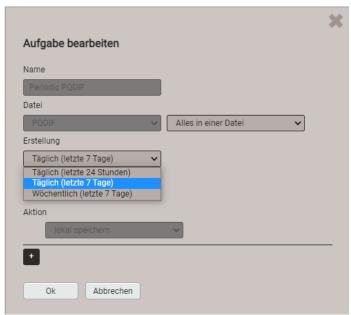
b) Details

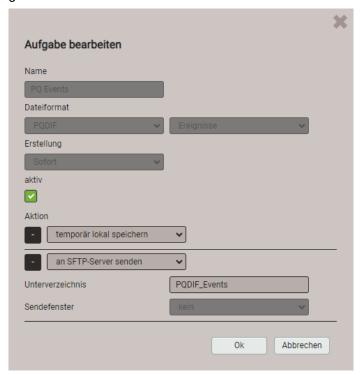
7.9 Messwert-Informationen in Dateiform

Mit dem Datenexport-Scheduler können Aufgaben verwaltet werden, um Messwert-Informationen in Dateiform bereitzustellen. Dateien können periodisch oder ereignisgesteuert erzeugt und lokal im Gerät gespeichert werden und / oder an einen SFTP-Server gesendet werden.

Die Erzeugung, Verwaltung und Anpassung von Aufgaben für die Bereitstellung von Dateien erfolgt über das Menü *Datenexport* | *Automatisierter Datenexport* im Einstellmenü.

7.9.1 Vordefinierte Aufgaben


Der Datenexport-Scheduler enthält drei vordefinierte Aufgaben für die Bereitstellung von Messwerten im PQDIF- oder CSV-Dateiformat. Zur besseren Lesbarkeit sind hier alle Aufgaben aktiviert, in der Werkseinstellung ist die Aufgabe «Periodic PQIS» inaktiv.


Diese Aufgaben können vom Anwender aktiviert, deaktiviert und geändert, aber nicht gelöscht werden. Lokale Speicherung und für PQDIF-Dateien auch das Senden an einen SFTP-Server können als mögliche Aktionen definiert werden. Falls eine Aufgabe angepasst werden soll, kann einfach die entsprechende Linie ausgewählt werden.

Periodic PQDIF

Diese Aufgabe wird periodisch jeweils kurz nach Mitternacht ausgeführt und speichert die Datei(en) in einer hierarchischen Zeitstruktur (Jahr, Monat, Tag). Die Aufgabe kann durch Auswahl des Eintrags angepasst werden. Es kann gewählt werden, ob die PQ-Informationen in einer Datei oder in bis zu drei Dateien (Statistics, Histograms, Events) enthalten sein soll. Der Zeitraum kann einen Tag oder sieben Tage umfassen, die Erzeugung kann täglich oder wöchentlich erfolgen. Werkseinstellung ist die tägliche Erzeugung von bis zu 3 Dateien, jeweils für den vergangenen Tag.

Wenn diese Aufgabe aktiviert ist, erzeugt das Gerät eine PQDIF-Datei mit den Ereignisdaten, sobald das zugehörige PQ-Ereignis beendet ist. Typischerweise wird diese Datei dann an einen SFTP-Server gesendet.

Periodic PQIS

Wenn diese Aufgabe aktiviert ist, erzeugt das Gerät periodisch, jeweils am Ende eines Tages, CSV-Dateien mit allen Informationen über die Netzqualität, eventuell während des Tages aufgetretene Ereignisse sowie die ermittelten Lastgänge. Diese Dateien können für einen wählbaren Zeitbereich in einer ZIP-Datei komprimiert heruntergeladen werden. Sie sind so aufgebaut und formatiert, dass sie direkt in die Software PQIS® eingelesen und dort ausgewertet werden können. Folgende Dateien werden erzeugt:

- 10-Minuten Mittelwerte für die PQ-Bewertung
- 2-Stunden Flickerwerte für die PQ-Bewertung
- Mittelwerte (programmierbares Intervall) der Leistungsgrössen
- PQ-Ereignisliste
- Daten für jedes PQ-Ereignis:
 - Halbperiodenwerte der Spannungen und Ströme
 - Kurvenform (Abtastwerte) der Spannungen und Ströme
- Signalspannungs-Ereignisliste
- Halbperiodenwerte der Spannungen für jedes Signalspannungsereignis

7.9.2 Periodische Datei-Informationen erzeugen

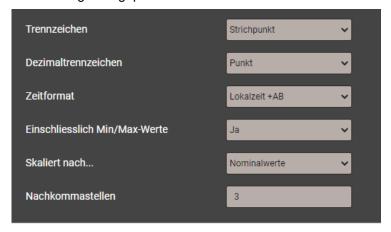
Zusätzlich zu den vordefinierten Aufgaben können Tasks definiert werden, welche Datenfiles mit einem spezifischen Inhalt in regelmässigen Abständen erzeugen. Diese Dateien können dann lokal gespeichert und/oder an einen SFTP-Server gesendet werden.

Via "Aufgabe erstellen" können neue Aufgaben erstellt werden. Ein Beispiel ist unten dargestellt:

Die Aufgabe "24h_Leistungsmittelwerte" soll tägliche CSV-Dateien erzeugen, mit den Standard-Leistungsmittelwerten der vergangenen 24 Stunden.

Die Dateien werden sowohl lokal gespeichert, als auch in den Unterordner "PowerMeans" eines SFTP-Servers gesendet. Die Einstellungen des zu verwendenden SFTP-Servers können über Kommunikation | SFTP im Einstellmenü definiert werden.

Das gewählte Sendefenster bewirkt eine zufällige Übertragung der Datei zum SFTP-Server innerhalb einer Stunde ab Erzeugung. Das Sendefenster kann bis zu 6 Stunden betragen, aber auch deaktiviert sein, um eine unmittelbare Übertragung zu erzwingen.


Die Aufgabenliste zeigt dann vier aktive Tasks. Die voreingestellten Aufgaben sind grau markiert, da sie nicht entfernt aber deaktiviert werden können. Die neue Aufgabe "24h_Leistungsmittelwerte" dagegen kann jederzeit vollständig geändert, deaktiviert oder wieder gelöscht werden.

Über die Einstellungen am lokalen Display können Aufgaben nur aktiviert / deaktiviert werden.

CSV-Einstellungen

CSV-Dateien sind für die Übertragung von Mittelwertstatistiken vorgesehen. Über die unten angezeigten Parameter können die Formatierung und der Inhalt der erzeugten Dateien an die jeweiligen Anforderungen angepasst werden.

- Das **Trennzeichen** separiert die einzelnen Einträge auf einer Textzeile, für die spätere Darstellung in Tabellenform.
- Das Dezimaltrennzeichen definiert wie Zahlen bzw. Messwerte in die Datei geschrieben werden.
 Das Dezimaltrennzeichen muss dem länderspezifischen Zahlenformat des Betriebssystems entsprechen, damit die CSV-Datei ohne Importvorgang direkt in Excel geöffnet werden kann. Übliche Trennzeichen sind Punkt (123.45) oder Komma (123,45).
- Zeitformat legt das zu schreibende Zeitformat fest. Beim Zeitformat "Lokalzeit+AB" werden bei der Umschaltung von Sommer- auf Winterzeit die doppelt vorkommenden Einträge zwischen 2 und 3 Uhr mit den Buchstaben A und B ergänzt.
- **Einschliesslich Min/Max-Werte** legt fest ob Mittelwerte mit / ohne Minimum und Maximumwerte in die CSV-Datei geschrieben werden.
- **Skaliert nach** legt fest, ob der Zahlenwert sich an der Grundeinheit (z.B. 1087.65W) oder an den entsprechend den Nominalwerten festgelegten Einheiten (z.B. 1.0876kW), welche auch im Weblitterface verwendet werden, orientiert.
- **Nachkommastellen** legt die Anzahl der Stellen nach dem Dezimaltrennzeichen fest, mit der die Zahlen in die Datei geschrieben werden.

7.9.3 Zugriff auf Dateien-Informationen via Webseite

Über das Service-Menü **Lokaler Datenspeicher | Daten herunterladen** kann auf die im Gerät gespeicherten Dateien zugegriffen werden. Abhängig von den im Datenexport-Scheduler definierten Aufgaben kann die verfügbare Dateistruktur unterschiedlich sein:

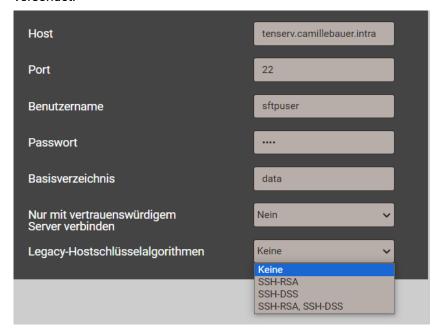
- csv: Datenablage für alle CSV-Dateien welche lokal gespeichert werden
- pqdif: Datenablage für alle PQDIF-Dateien welche lokal gespeichert werden

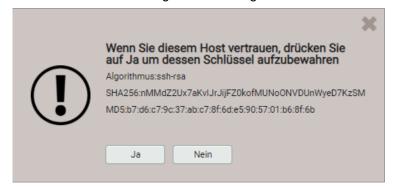
Die existierende Dateistruktur wird dann in einem neuen Tab angezeigt.



Dateien sind in einer hierarchischen Zeitstruktur (Jahr, Monat, Tag) abgelegt. Durch Auswahl des gewünschten Datums und Doppelklick auf die Datei, kann diese einfach herunterladen werden.

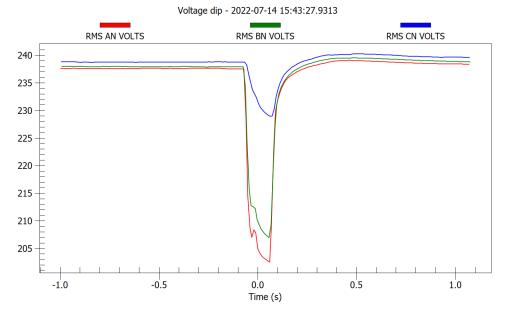
7.9.4 PQIS-Dateien herunterladen


Über das Service-Menü können die im Gerät gespeicherten Dateien für die Datenübernahme in die Software PQIS heruntergeladen werden.


Durch Auswahl einer Messkampagne können alle Datei-Informationen für den vollständigen Mess-Zeitraum als komprimierte ZIP-Datei auf den lokalen Rechner heruntergeladen werden. Anfangs- und Endzeit werden automatisch übernommen, können aber geändert werden. Falls gewünscht, können Datenfiles von Signalspannungs-Ereignissen weggelassen werden, da sie kein Netzqualitätsproblem repräsentieren.

7.9.5 Periodisches Versenden an einen SFTP-Server

Falls im Datenexport-Scheduler als Aktion das Senden an einen SFTP-Server ausgewählt wurde, werden die entsprechenden Dateien an den in den Einstellungen der Kommunikation eingestellten SFTP-Server versendet.


Zur Erhöhung der Sicherheit kann eingestellt werden, dass sich das Gerät nur mit einem vertrauenswürdigen Server verbindet. Dieser muss bei der Aktivierung dieser Einstellung verfügbar sein und sendet seinen öffentlichen Schlüssel an das Gerät. Wenn dieser Schlüssel akzeptiert wird, wird der Host in die Liste der vertrauenswürdigen Server aufgenommen.

In der aktuell verwendeten OpenSSH-Version werden **Legacy-Algorithmen** standardmässig nicht unterstützt, da sie als zu schwach angesehen werden. Sie können aber freigegeben werden, falls der SFTP-Server nur diese unterstützt. In den <u>Kommunikationstests</u> im Service-Menü können verschiedene Einstellungen getestet werden, um diejenige zu finden, welche vom SFTP-Server unterstützt wird.

7.9.6 Auswertung der PQDIF-Dateien

Für die Auswertung der Daten der PQDIF-Dateien kann ein kostenfreiesTool mit beschränktem Funktionsumfang, wie der PQDiffractor von Electrotek Concepts (http://www.pqview.com/pqdiffractor/; Registrierung erforderlich) oder jede andere Software (z.B. Dranview-7) welche das PQDIF-Format unterstützt, verwendet werden.

Darstellung eines Spannungseinbruchs mit dem PQDiffractor

7.10 Anzeige-Timeouts

Geräte mit Display sind für die Anzeige von Messdaten konzipiert. Deshalb wird jeder andere Vorgang nach einer bestimmten Zeit ohne Anwender-Interaktion beendet und das zuletzt aktive Messwertbild wieder angezeigt.

Menü-Timeout

Wird 2 min. lang die aktuelle Menüauswahl nicht mehr geändert, tritt ein Menü-Timeout auf. Dabei spielt es keine Rolle, ob das aktuell angezeigte Menü das Hauptmenü oder ein Untermenü ist: Das Menü wird geschlossen und das zuletzt aktive Messwertbild wieder angezeigt.

Konfigurations-Timeout

Nach 5 min. ohne Interaktion in einer Parameter-Auswahl oder während der Eingabe eines Wertes im Einstellungs-Menü, wird der aktive Konfigurationsschritt abgebrochen, wobei der zugehörige Parameter unverändert bleibt. Der nächste Schritt hängt dann davon ab, was vorgängig gemacht wurde:

- Falls der Anwender vor dem abgebrochenen Schritt keine Konfigurationsparameter geändert hat, wird das Hauptmenü angezeigt und das Gerät beginnt ein mögliches Menü-Timeout zu überwachen.
- Falls der Anwender vor dem abgebrochenen Schritt Konfigurationsparameter geändert hat, wird die Abfrage "Konfiguration speichern?" angezeigt. Falls der Anwender diese Abfrage nicht innerhalb zwei Minuten beantwortet, wird die geänderte Konfiguration gespeichert und aktiviert. Danach wird das zuletzt aktive Messwertbild wieder angezeigt.

8. Instandhaltung, Wartung und Entsorgung

8.1 Kalibration und Neuabgleich

Jedes Gerät wird vor der Auslieferung abgeglichen und geprüft. Der Auslieferungszustand wird erfasst und in elektronischer Form abgelegt.

Die Messunsicherheit von Messgeräten kann sich während des Betriebs ändern, falls z.B. die spezifizierten Umgebungsbedingungen nicht eingehalten werden. Auf Wunsch kann bei uns im Werk eine Kalibrierung, verbunden mit einem eventuellen Neuabgleich, zur Sicherstellung der Genauigkeit durchgeführt werden.

8.2 Reinigung

Die Anzeige und die Bedientasten sollten in regelmässigen Abständen gereinigt werden. Verwenden Sie dazu ein trockenes oder leicht angefeuchtetes Tuch.

Schäden durch Reinigungsmittel

Reinigungsmittel können nicht nur die die Klarheit der Anzeige beeinträchtigen, sondern auch Schäden am Gerät verursachen. Verwenden Sie deshalb keine Reinigungsmittel.

8.3 Batterie

Das Gerät enthält eine Batterie zur Pufferung der internen Uhr. Diese kann vom Anwender nicht getauscht werden. Der Ersatz kann nur im Werk erfolgen.

Falls die USV-Option im Gerät implementiert ist, muss das zugehörige Batteriepack regelmässig ausgetauscht werden. Für mehr Informationen siehe <u>Kapitel 5.9</u>.

8.4 Cyber Security Ausserbetriebnahme

Loggerdaten im internen Speicher

Um die Daten (Unterabrechnung, Stromüberwachungsdaten, Netzqualitätsdaten, Syslog-Daten, Zeitstempel) vor unberechtigtem Zugriff zu schützen, müssen die Daten vor der Ausserbetriebnahme des Gerätes gelöscht werden. Dies kann über den entsprechenden Menüpunkt im Servicemenü erfolgen.

8.5 Entsorgung

Das Gerät muss in Übereinstimmung mit den lokalen Gesetzen und Vorschriften entsorgt werden. Dies gilt insbesondere für die eingebaute Batterie.

9. Technische Daten

Eingänge

Strom (Hardware-Versionen: 3 V oder 5 A)

• **3V 50/60 Hz** max. 6.0 V (sinusförmig)

• 5A 50/60 Hz

Nennstrom: einstellbar 1...5 A; max. 7.5 A (sinusförmig)

Messkategorie: 300V CAT III

Eigenverbrauch: $\leq l^2 \times 0.01 \Omega$ pro Phase

Überlastbarkeit: 10 A dauernd; 100 A, 5 x 1 s, Intervall 300 s

Nennspannung: 57,7...400 V_{LN} (UL: 347 V_{LN}), 100...693 V_{LL} (UL: 600 V_{LL});

Messbereich max.: 520 V_{LN}, 900 V_{LL} (Sinus)

Messkategorie: 600V CAT III

Eigenverbrauch: $\leq U^2 / 1,54 \text{ M}\Omega \text{ pro Phase}$ Impedanz: $1,54 \text{ M}\Omega \text{ pro Phase}$

Überlastbarkeit: dauernd: 520 V_{LN}, 900 V_{LL}

10 x 1 s, Intervall 10s: 800 V_{LN},1386 V_{LL}

Anschlussarten: Einphasennetz

Split Phase (2-Phasen Netz) 3-Leiter, gleichbelastet 3-Leiter, ungleichbelastet

3-Leiter, ungleichbelastet, Aron-Schaltung

4-Leiter, ungleichbelastet

Nennfrequenz: 42...<u>50</u>...58Hz oder 50,5...<u>60</u>...69,5Hz, programmierbar

Abtastrate: 18 kHz

Datenspeicher intern: 32 GB

Messunsicherheit

Referenzbedingungen: Nach IEC/EN 60688, Umgebung 15...30°C,

sinusförmiger Eingang (Formfaktor 1,1107), keine feste Frequenz für Abtastung,

Messzeit 200ms (10 Perioden bei 50Hz, 12 Perioden bei 60Hz)

Spannung, Strom: $\pm 0.1\%$ 1) 2)

Neutralleiterstrom: ± 0,2% 1) (falls berechnet)

Leistung: $\pm 0,2\%$ 1) 2) Leistungsfaktor: ± 0,2° Frequenz: ± 0,01 Hz Unsymmetrie U,I: $\pm 0.5\%$ Harmonische: $\pm 0.5\%$ THD U,I: $\pm 0.5\%$ Klasse 0,2S Wirkenergie ³⁾: Blindenergie 4): Klasse 0,5S

Messung mit fixierter Netzfrequenz:

Generell: \pm Grundfehler x (F_{konfig} – F_{ist}) [Hz] x 10

Unsymmetrie U: \pm 2% bis \pm 0,5 Hz Harmonische: \pm 2% bis \pm 0,5 Hz THD, TDD: \pm 3,0% bis \pm 0,5 Hz

¹⁾ Bezogen auf den Nennwert der Grundgrösse

²⁾ Zusatzfehler bei Eingangsbeschaltung ohne Neutralleiter (3-Leiter Anschluss)

[•] Spannung, Leistung: 0,1% des Messwertes; Leistungsfaktor: 0,1°

[•] Energie: Spannungseinfluss x 2, Winkelfehler x 2

3) Nach IEC 62053-22: 2003 für

Anforderungen an die Genauigkeit	Kapitel
Zählerkonstante	8.4
Prüfung des Anlaufstromes	8.3.3
Grenzen der Messabweichung bei verschiedenen Strömen	8.1
Grenzen der Messabweichung in Abhängigkeit anderer Einflussgrössen	Kapitel
5. Harmonische von Spannung und Strom	8.2.1
Subharmonische im Wechselstrompfad	8.2.1
Ungerade Harmonische im Wechselstrompfad	8.2.1
Vertauschte Phasenfolge	8.2.1

4) Nach IEC 62053-24: 2014 für

Anforderungen an die Genauigkeit	Kapitel
Zählerkonstante	8.5
Prüfung des Anlaufstromes	8.4
Grenzen der Messabweichung bei verschiedenen Strömen	8.2
Grenzen der Messabweichung in Abhängigkeit anderer Einflussgrössen	Kapitel
5. Harmonische von Spannung und Strom	8.3
Subharmonische im Wechselstrompfad	8.3
Ungerade Harmonische im Wechselstrompfad	8.3
Vertauschte Phasenfolge	8.3

Power Quality

Art des Gerätes: (IEC 62586-1) **PQI-A FI1**: Power **Q**uality **I**nstrument – Klasse **A**; **F**ixe Installation;

Innenraumanwendung mit unkontrollierten Temperatur-Variationen (1)

Messintervall: 200 ms (50Hz: 10 Perioden; 60Hz: 12 Perioden)
Markierungskonzept: Mehrphasiger Ansatz gemäss IEC 61000-4-30

Zertifizierung: Gemäss IEC 62586-2 (Norm für die Prüfung der Einhaltung der IEC 61000-4-30)

Zertifizierungsstelle: Eidgenössisches Institut für Metrologie METAS, eine unabhängige und

akkreditierte Prüfstelle

PQ-Funktionalität gemäss IEC 61000-4-30 Ed.3

Кар.	PQ-Parameter	Compliance 120 V- 60 Hz	Compliance 230 V – 50 Hz
6.1	Netzfrequenz	Ja	Ja
6.2	Höhe der Versorgungsspannung	Ja	Ja
6.3	Flicker	Ja (Klasse F1)	Ja (Klasse F1)
6.4	Unterbrüche, Einbrüche, Überhöhungen der Versorgungsspannung	Ja	Ja
6.5	Unsymmetrie der Versorgungsspannung	Ja	Ja
6.6	Oberschwingungen der Spannungen	Ja	Ja
6.7	Interharmonische der Spannungen	Ja	Ja
6.8	Spannungen für Signalübertragung	Ja	Ja
6.9	Messung von Unter- und Überabweichung	Ja	Ja
6.10	Flagging	Ja	Ja
6.11	Unsicherheit der Zeitinformation	Ja	Ja
6.12	Variationen aufgrund externer Einflussgrössen	Ja	Ja
6.13	Schnelle Spannungsänderungen (RVC)	Ja	Ja
6.14	Stromstärke	Ja	Ja
6.15	Oberschwingungen der Ströme	Ja	Ja
6.16	Interharmonische der Ströme	Ja	Ja
6.17	Unsymmetrie der Ströme	Ja	Ja

Nullpunktunterdrückung, Bereichseinschränkungen

Die Messung einer Grösse ist jeweils an eine Grundbedingung geknüpft, welche erfüllt sein muss, damit ein Wert bestimmt und via Schnittstelle ausgegeben bzw. auf dem Display angezeigt werden kann. Ist diese Bedingung nicht mehr erfüllt, wird ein Ersatzwert als Messwert verwendet.

Grösse	Bedingung	Ersatzwert
Spannung	Ux < 1% Ux _{nenn}	0.00
Strom	Ix < 0,1% Ix _{nenn}	0.00
PF	Sx < 1% Sx _{nenn}	1.00
QF, LF, tanφ	Sx < 1% Sx _{nenn}	0.00
Frequenz	Spannungs- und/oder Stromeingang zu klein 1)	Nennfrequenz
Unsymmetrie U	Ux < 5% Ux _{nenn}	0.00
Unsymmetrie I	Mittelwert der Phasenströme < 5% Ix _{nenn}	0.00
Phasenwinkel U	mind. eine Spannung Ux < 5% Ux _{nenn}	120°
Harm.U, THD-U	Grundharmonische < 5% Ux _{nenn}	0.00

¹⁾ spezifische Ansprechschwellen von Konfiguration des Gerätes abhängig

Hilfsenergie

Nennspannung: 100...230V AC 50/60Hz / DC ±15%

Überspannungskategorie: OVC III

Leistungsaufnahme: Einzel-Rack: max. 40VA (hängt von der verwendeten Geräteausführung ab)

Doppel-Rack: max. 60VA (hängt von der verwendeten Geräteausführung ab)

I/O-Interface

Analoge Ausgänge

Linearisierung: Linear, mit Knick

Bereich: ± 20 mA (24 mA max.), bipolar

Unsicherheit: ± 0,2% von 20 mA

Bürde: $\leq 500 \Omega \text{ (max. } 10 \text{ V} / 20 \text{ mA)}$

Bürdenabhängigkeit: ≤ 0,2%

Restwelligkeit: ≤ 0,4%

Einstellzeit: 220...420 ms

Passive digitale Eingänge via Steckklemmen

Nennspannung: 24 ÷ 130 V DC (130 V max.) 110 ÷ 220 V DC (-15/+20%)

Digitalausgang Relais

Belastbarkeit: 250 V AC, 2 A, 500 VA

30 V DC, 2 A, 60 W

Kommunikation

Ethernet via RJ45-Buchse

Protokoll: Modbus/TCP, NTP, https, IPv4, IPv6

Physik: Ethernet 100BaseTX

Mode: 10/100 Mbit/s, Voll-/Halbduplex, Autonegotiation

IEC61850 via RJ45-Buchsen, 2 gleichwertige Ports

Protokoll: IEC61850, NTP
Physik: Ethernet 100BaseTX

Mode: 10/100 Mbit/s, Voll-/Halbduplex, Autonegotiation

Modbus/RTU via Steckklemme (A, B, C/X)

Protokoll: Modbus/RTU

Physik: RS-485, max. 1200m (4000 ft)

Baudrate: 9'600, 19'200, 38'400, 57'600, 115'200 Baud

Anzahl Teilnehmer: ≤ 32

Interne Uhr (RTC)

Unsicherheit: ± 2 Minuten / Monat (15 bis 30°C)

Synchronisation: keine, via Ethernet (NTP-Protokoll) oder GPS

Gangreserve: > 10 Jahre

Unterbrechungsfreie Stromversorgung (USV)

Typ: VARTA Easy Pack EZPAckL, UL listed MH16707

Nennspannung: 3,7V

Kapazität: 1150 mAh min., 4.5 Wh

Überbrückungszeit: 5 mal 3 Minuten

Lebensdauer: 3 bis 5 Jahre, abhängig von Betriebs- und Umgebungsbedingungen

Umgebungsbedingungen, allgemeine Hinweise

• Gerät ohne USV: –10 bis <u>15 bis 30</u> bis + 55°C

Gerät mit USV: 0 bis 15 bis 30 bis + 35°C

(falls ausserhalb dieses Betriebstemperaturbereichs betrieben, ist nicht sichergestellt, dass das

Batteriepack nachgeladen wird)

Lagertemperatur: Basisgerät: -25 bis + 70°C;

Batteriepack USV: -20...60°C (<1 Monat); -20°...45°C (< 3 Monate);

-20...30°C (< 1 Jahr)

Temperatureinfluss: 0,5 x Messunsicherheit pro 10 K Langzeitdrift: 0,5 x Messunsicherheit pro Jahr

Anwendungsgruppe: II (nach EN 60 688)
Relative Luftfeuchte: < 95% ohne Betauung
Betriebshöhe: ≤ 2'000 m über NN

Nur in Innenräumen zu verwenden!

Mechanische Eigenschaften

Gehäusematerial: Polycarbonat (Makrolon)

Brennbarkeitsklasse: V-0 nach UL94, selbstverlöschend, nicht tropfend, halogenfrei

Gewicht: 4.2 kg (Einzel-Rack), 5.0 kg (Doppel-Rack)

Abmessungen: Massbilder

Vibrationsbeständigkeit (Test nach DIN EN 60 068-2-6)

Beschleunigung: Gerät mit Display: ± 0,25 g (Betrieb); 1,20 g (Lagerung)

Frequenzbereich: 10 ... 150 ... 10 Hz, durchsweepen mit

Durchlaufgeschwindigkeit: 1 Oktave/Minute

Anzahl Zyklen: Je 10, in den 3 senkrecht aufeinander stehenden Ebenen

Sicherheit

Schutzklasse: II (schutzisoliert, Spannungseingänge mit Schutzimpedanz)

Verschmutzungsgrad: 2

Berührungsschutz: Front: IP40;

Gehäuse: IP30; IP20 (für Ausführungen ohne Router)

Klemmen: IP20

Bemessungsspannung

Hilfsenergie: 100...230V AC / DC

(gegen Erde):

I/O's: 130 / 220 V DC

• Gerät mit 5A 50/60Hz Stromeingängen

Die Stromeingänge sind untereinander galvanisch getrennt.

Prüfspannungen: Prüfdauer 60s, nach IEC/EN 61010-1 (2011)

Hilfsenergie gegen Eingänge U 1): 3600V AC
Hilfsenergie gegen Eingänge I: 3000V AC
Hilfsenergie gegen Bus, I/O's: 3000V AC
Eingänge U gegen Eingänge I: 1800V AC
Eingänge U gegen Bus, I/O's 1): 3600V AC
Eingänge I gegen Bus, I/O's: 3000V AC
Eingänge I gegen Eingänge I: 1500V AC

• Gerät mit 3V 50/60Hz Stromeingängen

Die Anschlüsse J der Stromeingänge sind intern verbunden.

Prüfspannungen: Prüfdauer 60s, nach IEC/EN 61010-1 (2011)

Hilfsenergie gegen Eingänge U ¹⁾: 3600V AC
 Hilfsenergie gegen Eingänge I: 3000V AC
 Hilfsenergie gegen Bus, I/O's: 3000V AC
 Eingänge U gegen Eingänge I, Bus, I/O's ¹⁾: 1800V AC

Um den Schutz gegen elektrischen Schlag zu gewährleisten, verwendet das Gerät für die Spannungseingänge das Prinzip der Schutzimpedanz. Alle Kreise des Gerätes werden bei der Endprüfung getestet.

Bevor Hochspannungs- oder Isolationsprüfungen unter Einbezug der Spannungseingänge durchgeführt werden, müssen alle Ausgangsanschlüsse des Gerätes, insbesondere Analogausgänge, Digital- und Relais-Ausgänge sowie Modbus- und Ethernet-Schnittstelle vom Gerät getrennt werden. Eine eventuelle Hochspannungs-Prüfung zwischen Ein- und Ausgangkreisen muss auf 500V DC begrenzt bleiben, da sonst elektronische Bauteile beschädigt werden können.

¹⁾ Nur bei Typenprüfung mit entfernten Schutzimpedanzen zulässig

¹⁾ Nur bei Typenprüfung mit entfernten Schutzimpedanzen zulässig

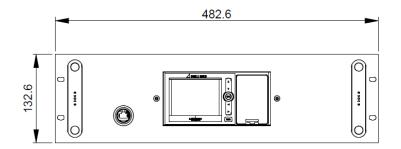
Angewendete Vorschriften, Normen und Richtlinien

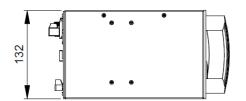
IEC/EN 61010-1	Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte
IEC/EN 61000-4-30 Ed.3	Verfahren zur Messung der Spannungsqualität
IEC/EN 61000-4-7	Verfahren zur Messung von Oberschwingungen und Zwischenharmonischen
IEC/EN 61000-4-15	Flickermeter – Funktionsbeschreibung und Auslegungsspezifikation
IEEE 1159.3	Recommended Practice for the Transfer of Power Quality Data
IEC 62586-1 Ed. 2	Messung der Spannungsqualität in Energieversorgungssystemen – Messgeräte für die Spannungsqualität
IEC 62586-2 Ed. 2	Messung der Spannungsqualität in Energieversorgungssystemen – Funktionsprüfungen und Anforderungen an die Messunsicherheit
IEC TS 63383	Cybersecurity aspects of devices used for power metering and monitoring, power quality monitoring, data collection and analysis
EN50160	Merkmale der Spannung in öffentlichen Elektrizitätsversorgungsnetzen
IEC/EN 60688	Messumformer für die Umwandlung von Wechselgrössen in analoge oder digitale Signale
DIN 40110	Wechselstromgrössen
IEC/EN 60068-2-1/	Umweltprüfungen
-2/-30/-6/-27:	-1 Kälte, -2 Trockene Wärme, -30 Feuchte Wärme, -6 Schwingungen, -27 Schocken
IEC/EN 60297-3-100	Bauweisen für elektronische Einrichtungen - Maße der 482,6-mm-(19-Zoll-)Bauweise - Teil 3-100: Hauptmaße von Frontplatten, Baugruppenträgern, Einschüben, Gestellen und Schränken.
IEC/EN 60529	Schutzarten durch Gehäuse
IEC/EN 61000-6-4	Elektromagnetische Verträglichkeit (EMV): Störaussendung für Industriebereiche
IEC/EN 61000-6-5	Elektromagnetische Verträglichkeit (EMV): Störfestigkeit im Bereich von Kraftwerken und Schaltstationen
IEC 62053-22: 2003	Elektronische Wirkverbrauchszähler der Genauigkeitsklassen 0,1 S 0,2 S und 0,5 S
IEC 62053-24: 2014	Elektronische Grundschwingungs-Blindverbrauchszähler der Genauigkeitsklassen 0,5 S, 1 S, 1, 2 und 3
Elektronische Grundschw	ringungs-Blindverbrauchszähler der Genauigkeitsklassen 0,5 S, 1 S und 1
UL94	Prüfung für die Entflammbarkeit von Kunststoffen für Bauteile in Einrichtungen und Geräten
004440=4=1145	

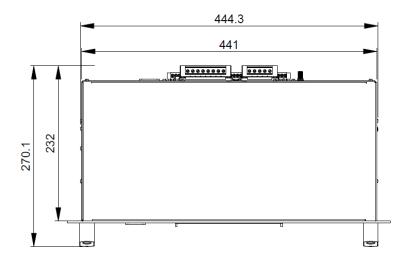
Warning

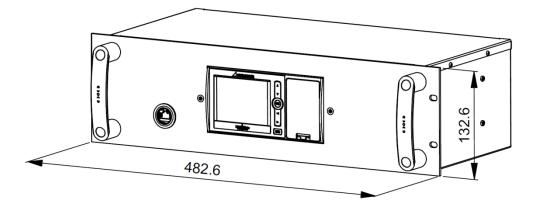
2011/65/EU (RoHS)

This is a class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.


EU-Richtlinie zur Beschränkung der Verwendung gefährlicher Stoffe


This device complies with part 15 of the FCC:


Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.


This Class A digital apparatus complies with Canadian ICES-003.

10. Masszeichnung

Alle Masse in [mm]

Anhang

A Beschreibung der Messgrössen

Verwendete Abkürzungen

1L Einphasennetz

2L Split phase, Netz mit 2 Phasen und Mittelabgriff

3Lb Dreileiternetz mit gleicher Belastung3Lu Dreileiternetz mit ungleicher Belastung

3Lu.A Dreileiternetz mit ungleicher Belastung, Aron-Schaltung (nur 2 Ströme angeschlossen)

4Lu Vierleiternetz mit ungleicher Belastung

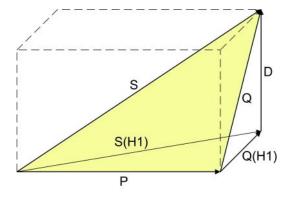
A1 Grund-Messgrössen

Die Grundmessgrössen des elektrischen Netzes werden alle 200ms, durch Mittelwertbildung über 10 Perioden bei Nennfrequenz 50Hz bzw. 12 Perioden bei 60Hz bestimmt. Ob eine Messgrösse verfügbar ist, ist von der gewählten Netzform abhängig.

Je nach Messgrösse werden auch Minimal- und Maximalwerte erfasst, welche mit Zeitstempel unverlierbar gespeichert werden. Diese Werte können vom Anwender via Display zurückgesetzt werden, siehe Rücksetzen von Messwerten.

Messgrösse	aktuell	max	min	1	2L	ЗГР	3Lu	3Lu.A	4Lu
Spannung U	•	•	٠						
Spannung U _{1N}	•	•	•						
Spannung U _{2N}	•	•	•		$\sqrt{}$				$\sqrt{}$
Spannung U _{3N}	•	•	•						
Spannung U ₁₂	•	•	•			$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
Spannung U ₂₃	•	•	•			$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
Spannung U ₃₁	•	•	•			\checkmark	\checkmark	7	
Spannung U _{NE} / U _{4C} 1)	•	•		\checkmark		\checkmark	\checkmark	7	
Strom I	•	•		\checkmark		\checkmark			
Strom I1	•	•							
Strom I2	•	•			$\sqrt{}$		$\sqrt{}$		$\sqrt{}$
Strom I3	•	•					\checkmark	\checkmark	$\sqrt{}$
Strom im Neutralleiter I _N	•	•		\checkmark					
Strom im Erdleiter I _{PE} (berechnet)	•	•							
Wirkleistung P	•	•						\checkmark	
Wirkleistung P1	•	•							
Wirkleistung P2	•	•			$\sqrt{}$				$\sqrt{}$
Wirkleistung P3	•	•							
Grundschwingungswirkleistung P(H1)	•	•		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
Grundschwingungswirkleistung P1(H1)	•	•			$\sqrt{}$				$\sqrt{}$
Grundschwingungswirkleistung P2(H1)	•	•							
Grundschwingungswirkleistung P3(H1)	•	•							
Gesamt-Blindleistung Q	•	•		\checkmark		\checkmark	\checkmark	7	
Gesamt-Blindleistung Q1	•	•			$\sqrt{}$				
Gesamt-Blindleistung Q2	•	•							
Gesamt-Blindleistung Q3	•	•							$\sqrt{}$
Verzerrungsblindleistung D	•	•		\checkmark	\checkmark	\checkmark	\checkmark	7	\checkmark
Verzerrungsblindleistung D1	•	•			\checkmark				\checkmark
Verzerrungsblindleistung D2	•	•			\checkmark				
Verzerrungsblindleistung D3	•	•							$\sqrt{}$
Grundschwingungsblindleistung Q(H1)	•	•		\checkmark				\checkmark	\checkmark
Grundschwingungsblindleistung Q1(H1)	•	•							
Grundschwingungsblindleistung Q2(H1)	•	•							
Grundschwingungsblindleistung Q3(H1)	•	•							$\sqrt{}$

 $^{^{1)}}$ U $_{4C}$ for 3-Leiter-Systeme, nur falls Messung der homopolaren Spannung aktiviert wurde; U $_{NE}$ sonst


	e							⋖	
Messgrösse	aktuell	max	min	7	2L	ЗГР	3Lu	3Lu.A	4Lu
Scheinleistung S	•	•		V	$\sqrt{}$		1	V	$\sqrt{}$
Scheinleistung S1	•	•			\checkmark				$\sqrt{}$
Scheinleistung S2	•	•							$\sqrt{}$
Scheinleistung S3	•	•							√
Grundschwingungsscheinleistung S(H1)	•	•			√	\checkmark	√	√	$\sqrt{}$
Grundschwingungsscheinleistung S1(H1)	•	•							$\sqrt{}$
Grundschwingungsscheinleistung S2(H1)	•	•							$\sqrt{}$
Grundschwingungsscheinleistung S3(H1)	•	•							$\sqrt{}$
Frequenz F	•	•	•	V		\checkmark	V		$\sqrt{}$
Powerfaktor PF	•				√	\checkmark	√	√	$\sqrt{}$
Powerfaktor PF1	•								$\sqrt{}$
Powerfaktor PF2	•								$\sqrt{}$
Powerfaktor PF3	•								$\sqrt{}$
PF Quadrant I			•	V	$\sqrt{}$		V		√
PF Quadrant II			•	V	√		V	1	$\sqrt{}$
PF Quadrant III			•	V	$\sqrt{}$		V	1	√
PF Quadrant IV			•	V	$\sqrt{}$		V	1	√
Blindfaktor QF	•				√	\checkmark	√	√	$\sqrt{}$
Blindfaktor QF1	•				\checkmark				$\sqrt{}$
Blindfaktor QF2	•								$\sqrt{}$
Blindfaktor QF3	•								V
Leistungsfaktor LF	•								V
Leistungsfaktor LF1	•								V
Leistungsfaktor LF2	•								$\sqrt{}$
Leistungsfaktor LF3	•								$\sqrt{}$
cosφ (H1)	•			1			√	√	$\sqrt{}$
cosφ (H1) L1	•				\checkmark				$\sqrt{}$
cosφ (H1) L2	•				\checkmark				$\sqrt{}$
cosφ (H1) L3	•								$\sqrt{}$
cosφ (H1) Quadrant I			•						$\sqrt{}$
cosφ (H1) Quadrant II			•						$\sqrt{}$
cosφ (H1) Quadrant III			•	1			√		$\sqrt{}$
cosφ (H1) Quadrant IV			•	1			√		$\sqrt{}$
tanφ (H1)	•						1		$\sqrt{}$
tanφ (H1) L1	•								$\sqrt{}$
tanφ (H1) L2	•								$\sqrt{}$
tanφ (H1) L3	•								$\sqrt{}$
U _{mean} =(U1N+U2N)/2	•								
U _{mean} =(U1N+U2N+U3N)/3	•								$\sqrt{}$
U _{mean} =(U12+U23+U31)/3	•					√	V	√	
I _{mean} =(I1+I2)/2	•				√				
I _{mean} =(I1+I2+I3)/3	•			,		,	√,		√
IMS, Strommittelwert mit Vorzeichen von P	•			1	√	√	√,	√	√
Phasenwinkel zwischen U1 und U2	•					√	√	√	√
Phasenwinkel zwischen U2 und U3	•					√ ,	1	√ /	V
Phasenwinkel zwischen U3 und U1	•			,		√ /	1	√ /	V
Winkel zwischen U und I	•			V	ı	√	1	√	-
Winkel zwischen U1 und I1	•				√				√
Winkel zwischen U2 und I2	•				$\sqrt{}$				√
Winkel zwischen U3 und I3	•				ı	-	- 1	-	√
Maximum ΔU <>Um	•	•			√ ,	√	1	√	1
Maximum ΔI <>Im	•	•					V		$\sqrt{}$

Nur via Kommunikations-Schnittstelle verfügbar

Blindleistung

Die Mehrzahl der Verbraucher entnimmt dem Netz einen ohmsch-induktiven Laststrom. Blindleistung entsteht dabei durch die induktive Belastung. In zunehmendem Masse werden aber auch nichtlineare Lasten angeschlossen. Dazu zählen drehzahlgeregelte Antriebe, Gleichrichter, Thyristorsteuerungen oder Leuchtstofflampen. Sie verursachen nichtsinusförmige Wechselströme, welche als Summe von Oberschwingungen darstellbar sind. Dadurch erhöht sich die zu übertragende Blindleistung, was zu höheren Übertragungsverlusten und Stromkosten führt. Dieser Blindleistungsanteil wird Verzerrungs-Blindleistung genannt.

Blindleistung ist im Allgemeinen unerwünscht, da sie keine nutzbare Wirkkomponente aufweist. Da ein Transport der Blindleistung über grössere Distanzen unwirtschaftlich ist, werden sinnvollerweise verbrauchernahe Kompensationsanlagen installiert. So können Übertragungskapazitäten besser genutzt und Verluste und Spannungsabfälle durch die Oberschwingungsströme vermieden werden.

P: Wirkleistung

S: Scheinleistung mit Berücksichtigung von Oberwellenanteilen

S(H1): Grundschwingungs-Scheinleistung

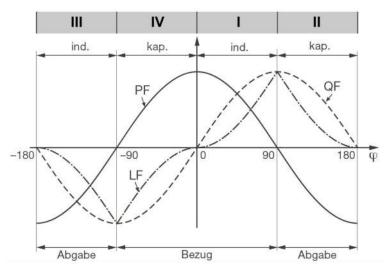
Q: Gesamt-Blindleistung

Q(H1): Grundschwingungs-Blindleistung

D: Verzerrungsblindleistung

Die Blindleistung lässt sich in eine Grundschwingungs- und eine Verzerrungs-Komponente aufteilen. Nur die Grundschwingungs-Blindleistung lässt sich mit der klassischen kapazitiven Methode direkt kompensieren. Die Verzerrungs-Komponente muss mit Verdrosselung oder aktiven Filtern bekämpft werden.

Der **Leistungsfaktor PF** entspricht dem Verhältnis der Wirkleistung P zur Scheinleistung S, beinhaltet also auch eventuelle Oberschwingungsanteile. Er wird oft fälschlicherweise als cosφ bezeichnet. Der PF entspricht aber nur dem **cosφ**, falls im Netz keine Oberschwingungsanteile vorhanden sind. Der **cosφ** repräsentiert somit das Verhältnis der Wirkleistung P zur Grundschwingungs-Scheinleistung S(H1).

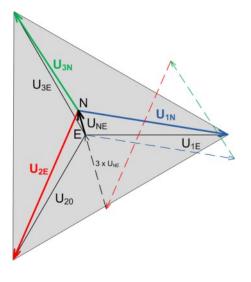

Der $tan\phi$ wird oft als Zielgrösse bei der kapazitiven Blindleistungs-Kompensation angewendet. Er entspricht dem Verhältnis der Grundschwingungs-Blindleistung Q(H1) zur Wirkleistung P.

Leistungsfaktoren

Der **Powerfaktor PF** gibt das Verhältnis der Wirkleistung zur Scheinleistung an. Falls keine Oberschwingungen im Netz vorhanden sind, entspricht dieser dem cosφ. Der PF kann im Bereich -1...0...+1 liegen, wobei das Vorzeichen die Energierichtung angibt.

Der **Leistungsfaktor LF** ist eine aus dem PF abgeleitete Grösse, welche erlaubt über das Vorzeichen eine Aussage über die Belastungsart zu machen. Nur so kann z.B. ein Bereich 0.5 kapazitiv ... 1 ... 0.5 induktiv eindeutig abgebildet werden.

Der **Blindfaktor QF** gibt das Verhältnis der Blindleistung zur Scheinleistung an.


Beispiel aus Sicht eines Energieverbrauchers

Nullpunkt-Verlagerungsspannung U_{NE}

Ausgehend vom erzeugenden System mit dem (normalerweise geerdeten) Sternpunkt E, verschiebt sich bei unsymmetrischer Belastung der Sternpunkt (N) auf Verbraucherseite. Die zwischen E und N anliegende Verlagerungsspannung lässt sich durch vektorielle Addition der Spannungszeiger der drei Phasen ermitteln:

$$\underline{U}_{NE} = -(\underline{U}_{1N} + \underline{U}_{2N} + \underline{U}_{3N})/3$$

Eine Verlagerungsspannung kann auch durch Oberwellen der Ordnung 3, 9, 15, 21 usw. entstehen, da sich die zugehörigen Ströme im Neutralleiter addieren.

A2 Oberschwingungs-Analyse

Die Analyse der Oberschwingungen erfolgt gemäss IEC 61000-4-7 über 10 Perioden bei 50Hz bzw. 12 Perioden bei 60Hz. Ob eine Messgrösse verfügbar ist, ist von der gewählten Anschlussart abhängig.

TIP C	•	•				3Lu	3	41
THD Spannung U2N		•						
	•	•						
THD Spannung U3N	•	•						
THD Spannung U12	•	•			^	^	^	
THD Spannung U23	•	•						
THD Spannung U31	•	•						
THD Strom I1/I	•	•	1					
THD Strom I2	•	•						
THD Strom I3	•	•						
TDD Strom I1/I	•	•						
TDD Strom I2	•	•						
TDD Strom I3	•	•						
Oberwellenanteile 250. U1N/U	•	•	\checkmark	1				1
Oberwellenanteile 250. U2N	•	•						
Oberwellenanteile 250. U3N	•	•						
Oberwellenanteile 250. U12	•	•						
Oberwellenanteile 250. U23	•	•						
Oberwellenanteile 250. U31	•	•						
Oberwellenanteile 250. I1/I	•	•	1					
Oberwellenanteile 250. I2	•	•						
Oberwellenanteile 250. I3	•	•						

Oberwellenanteile sind bis zur 89. (50Hz) oder 75. (60Hz) auf der Modbus-Schnittstelle verfügbar.

Nur via Kommunikations-Schnittstelle verfügbar

Oberschwingungen

Oberschwingungen sind Vielfache der Grund- bzw. Netzfrequenz. Sie entstehen durch nichtlineare Verbraucher im Netz, wie z.B. drehzahlgeregelte Antriebe, Gleichrichter, Thyristorsteuerungen oder Leuchtstofflampen. Dadurch entstehen unerwünschte Nebenwirkungen, wie etwa die zusätzliche thermische Belastung von Betriebsmitteln oder Leitungen, welche zu vorzeitiger Alterung oder sogar zum Ausfall führen können. Auch die Zuverlässigkeit sensitiver Verbraucher kann beeinträchtigen werden und unerklärliche Störungen verursachen. In industriellen Netzen lässt sich aus dem Oberwellen-Abbild meist sehr gut ermitteln, welche Arten von Verbrauchern angeschlossen sind. Siehe auch:

▶ Blindleistungserhöhung durch Oberschwingungsströme

TDD (Total Demand Distortion)

Der gesamte Oberschwingungsanteil der Ströme wird zusätzlich als Total Demand Distortion, kurz TDD, bestimmt. Dieser ist auf den maximalen Bedarfsstrom skaliert. Nur so kann dessen Einfluss auf die angeschlossenen Betriebsmittel richtig abgeschätzt werden.

Maximalwerte

Die erfassten Maximalwerte der Oberschwingungsanalyse entstehen durch Überwachung der Maximalwerte von THD und TDD. Die Maximalwerte der individuellen Oberwellenanteile werden nicht einzeln überwacht, sondern werden gespeichert, falls ein maximaler THD oder TDD erkannt wird. Das maximale Oberwellenabbild stimmt so immer mit dem zugehörigen THD bzw. TDD überein.

Die Genauigkeit der Oberschwingungs-Analyse ist stark abhängig von den eventuell eingesetzten Strom- und Spannungswandlern. Im Oberschwingungsbereich verändern diese sowohl die Amplitude als auch die Phasenlage der zu messenden Signale. Es gilt: Je höher die Frequenz der Oberschwingung, desto stärker die Dämpfung bzw. die Phasenschiebung.

A3 Netz-Unsymmetrie

Messgrösse	aktuell	max	7	2L	ЗГР	3Lu	3Lu.A	4Lu
UR1: Mitsystem [V]	•					√		V
UR2: Gegensystem [V]	•					√		$\sqrt{}$
U0: Nullsystem [V]	•							$\sqrt{}$
U: Unsymmetrie UR2/UR1	•	•				√	√	
U: Unsymmetrie U0/UR1	•	•						
IR1: Mitsystem [A]	•					√		
IR2: Gegensystem [A]	•							\checkmark
I0: Nullsystem [A]	•							
I: Unsymmetrie IR2/IR1	•	•				√		√
I: Unsymmetrie I0/IR1	•	•						V

Nur via Kommunikations-Schnittstelle verfügbar

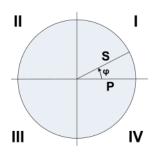
Unsymmetrie in Drehstromnetzen kann sowohl durch einphasige Belastung entstehen, als auch durch Störfälle, wie z.B. das Durchbrennen einer Sicherung, einen Erdschluss, einen Phasenausfall oder Isolationsfehler. Auch Oberwellenanteile 3., 9., 15., 21. usw. Ordnung, welche sich im Neutralleiter addieren, können zu Unsymmetrie führen. Auf Nennwert dimensionierte Betriebsmittel wie Drehstromgeneratoren, Transformatoren oder Motoren auf Verbraucherseite, können durch Unsymmetrie übermässig beansprucht werden. Dies kann zu verkürzter Lebensdauer oder thermisch bedingten Schädigungen oder Ausfällen führen. Eine Überwachung der Unsymmetrie hilft somit Kosten im Unterhalt zu sparen und verlängert die störungsfreie Betriebsdauer der eingesetzten Betriebsmittel.

Bei Unsymmetrie- oder Schieflast-Überwachungsrelais werden verschiedene Messprinzipien verwendet. Die eine Methode verwendet den Ansatz der symmetrischen Komponenten, die andere liefert die Maximalabweichung vom Mittelwert der drei Phasenwerte. Deren Resultate liefern nicht dasselbe Resultat und verfolgen auch nicht denselben Zweck. Deshalb sind im Gerät beide Prinzipien implementiert.

Symmetrische Komponenten (nach Fortescue)

Die Bestimmung der Unsymmetrie mit Hilfe der symmetrischen Komponenten ist die anspruchsvollere und rechenintensivere Methode. Sie liefert Ergebnisse, welche für die Störanalyse und zu Schutzzwecken in Dreiphasennetzen verwendet werden können. Dabei wird das real existierende Netz in symmetrische Teilnetze aufgeteilt, das Mitsystem, das Gegensystem und bei Netzen mit Neutralleiter auch ein Nullsystem. Der Ansatz ist am besten bei rotierenden Maschinen zu verstehen. Das Mitsystem repräsentiert ein positives Drehfeld, das Gegensystem ein negatives (bremsendes) Drehfeld mit umgekehrter Drehrichtung. Das Gegensystem verhindert also, dass die Maschine das volle Drehmoment entwickeln kann. Bei Generatoren ist z.B. die maximale zulässige Schieflast (Stromunsymmetrie) typischerweise auf einen Wert von 8...12% begrenzt.

Maximalabweichung vom Mittelwert


Die Berechnung der Maximalabweichung vom Mittelwert der Phasenströme bzw. -spannungen gibt Aufschluss darüber, ob ein Netz oder eine Unterverteilung unsymmetrisch belastet ist. Die Resultate sind unabhängig von Nennwerten und der momentanen Belastung. So kann eine symmetrischere Belastung angestrebt werden, z.B. durch Umhängen von Verbrauchern.

Auch eine Störfallerkennung ist möglich. Die in Kompensationsanlagen eingesetzten Kondensatoren sind Verschleissteile, die oft ausfallen und dann ersetzt werden müssen. Beim Einsatz dreiphasiger Leistungskondensatoren werden alle Phasen gleich kompensiert, was bei nahezu symmetrischer Netzbelastung zu betragsmässig vergleichbaren Strömen durch die Kondensatoren führt. Durch die Überwachung der Maximalabweichung der Phasenströme kann beurteilt werden, ob ein Kondensator ausgefallen ist.

Die Maximalabweichungen werden im Takt der Momentanwert-Erfassung bestimmt (siehe A1).

A4 Mittelwerte und Trend

Messgrösse		aktuell	Trend	max	min	Historie
Wirkleistung I+IV	10s60min. 1)	•	•	•	•	5
Wirkleistung II+III	10s60min. 1)	•	•	•	•	5
Blindleistung I+II	10s60min. 1)	•	•	•	•	5
Blindleistung III+IV	10s60min. 1)	•	•	•	•	5
Scheinleistung	10s60min. 1)	•	•	•	•	5
Mittelwertgrösse 1	10s60min. ²⁾	•	•	•	•	1
Mittelwertgrösse 12	10s60min. ²⁾	•	•	•	•	1

Mittelwertbildung

Die Bestimmung der Mittelwert erfolgt durch Integration der ermittelten Momentanwerte während eines programmierbaren Intervalls. Die Intervallzeit kann im Bereich von 10 Sekunden bis zu einer Stunde gewählt werden. Mögliche diskrete Zwischenwerte sind so gesetzt, dass deren Vielfaches eine Minute oder eine Stunde beträgt. Die Leistungsmittelwerte (Intervallzeit t1) und die freien Mittelwerte (Intervallzeit t2) können unterschiedliche Mittelungszeiten aufweisen.

Synchronisation

Für die Synchronisation der Mittelungsintervalle wird die interne Uhr verwendet. Damit die Leistungsmittelwerte auf Verbraucher- und Erzeugerseite verglichen werden können, muss die Uhr deshalb via NTP, GPS oder IRIG-B synchronisiert werden.

Trend

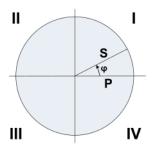
Der vermutliche Endwert (Trend) der Mittelwerte wird durch gewichtete Addition von Messwerten des vergangenen und des aktuellen Intervalls bestimmt. Er dient dazu, frühzeitig ein mögliches Überschreiten eines vorgegebenen Maximalwertes zu erkennen und, z.B. durch Abschalten eines aktiven Verbrauchers, vermeiden zu können.

Historie

Für Leistungsmittelwerte sind die letzten 5 Intervallwerte, sowohl über die Anzeige am Gerät als auch über die Schnittstelle, verfügbar. Für die programmierbaren Mittelwertgrössen ist jeweils der Wert des letzten Intervalls über die Schnittstelle abfragbar.

Bimetallstrom

Mit Hilfe dieser Messgrösse lässt sich der Langzeit-Effekt des Stromes messen, z.B. zur Überwachung der Erwärmung einer stromdurchflossenen Leitung. Dazu wird eine exponentielle Funktion verwendet, ähnlich der Ladekurve eines Kondensators. Die Einstellzeit der Funktion ist frei wählbar, typischerweise aber gleich wie das Intervall zur Bestimmung der Leistungsmittelwerte.


Messgrösse		aktuell	max	11	77	ସ୮୧	пТЕ	3Lu.A	4Lu
Bimetallstrom IB,	160min. ³⁾	•	•			√			
Bimetallstrom IB1,	160min. ³⁾	•	٠		7		√		$\sqrt{}$
Bimetallstrom IB2,	160min. ³⁾	•	•					\checkmark	
Bimetallstrom IB3,	160min. ³⁾	•	•						$\sqrt{}$

³⁾ Intervallzeit t3

¹⁾ Intervallzeit t1 2) Intervallzeit t2

A5 Zähler

Messgrösse		1	2L	ЗГР	3Lu	3Lu.A	4Lu	
Wirkenergie I+IV,	Hochtarif	•	•	•	•	•	•	
Wirkenergie II+III,	Hochtarif	•	•	•	•	•	•	
Blindenergie I+II,	Hochtarif	•	•	•	•	•	•	
Blindenergie III+IV,	Hochtarif	•	•	•	•	•	•	
Wirkenergie I+IV,	Niedertarif	•	•	•	•	•	•	
Wirkenergie II+III,	Niedertarif	•	•	•	•	•	•	
Blindenergie I+II,	Niedertarif	•	•	•	•	•	•	
Blindenergie III+IV,	Niedertarif	•	•	•	•	•	•	
Anwenderprogrammie	erter Zähler 1							
Anwenderprogrammie	erter Zähler 2							
Anwenderprogrammie	erter Zähler 3							
Anwenderprogrammie	erter Zähler 4							
Anwenderprogrammie	erter Zähler 5		_	s kön				
Anwenderprogrammie	erter Zähler 6			essgrö en. we		•		
Anwenderprogrammie	erter Zähler 7			,				
Anwenderprogrammie	erter Zähler 8	aktuell gewählten Netzform unterstützt werden						
Anwenderprogrammie	erter Zähler 9	1						
Anwenderprogrammie	erter Zähler 10							
Anwenderprogrammie	erter Zähler 11							

Standardzähler

Die Zähler für Wirk- und Blindenergie im Netz sind immer aktiv.

Anwenderprogrammierte Zähler

Anwenderprogrammierter Zähler 12

Jedem dieser Zähler kann vom Anwender frei eine Basismessgrösse zugeordnet werden.

Programmierbare Zählerauflösung

Für alle Zähler kann die Auflösung (angezeigte Einheit) nahezu frei gewählt werden. Damit können Anwendungen mit kurzer Messzeit, z.B. Energieverbrauch pro Arbeitstag oder Charge, realisiert werden. Je feiner die Grundeinheit gewählt wird, desto schneller wird auch der Zählerüberlauf erreicht.

B Anzeige-Matrizen

B0 Verwendete Kurzbezeichnungen der Messgrössen

Momentanwerte

Name	Mess	grössen-Identifikation		Einh.	Beschreibung
U	U	<u> </u>	TRMS	V	Spannung im Netz
U1N	U	1N	TRMS	V	Spannung zwischen den Leitern L1 und N
U2N	U	2N	TRMS	V	Spannung zwischen den Leitern L2 und N
U3N	U	3N	TRMS	V	Spannung zwischen den Leitern L3 und N
U12	U	12	TRMS	V	Spannung zwischen den Leitern L1 und L2
U23	U	23	TRMS	V	Spannung zwischen den Leitern L2 und L3
U31	U	31	TRMS	٧	Spannung zwischen den Leitern L3 und L1
UNE	U	NE	TRMS	٧	Sternpunktverlagerungsspannung
U4C	U	4C	TRMS	٧	Homopolare Spannung zwischen U4 und COM
I	I		TRMS	Α	Strom im gleichbelasteten 1-, 3- oder 4-Leiter Netz
l1	I	1	TRMS	Α	Strom im Leiter L1
12	I	2	TRMS	Α	Strom im Leiter L2
13	I	3	TRMS	Α	Strom im Leiter L3
IN	I	N	TRMS	Α	Neutralleiterstrom
IPE	I	PE	TRMS	Α	Erdstrom
Р	Р		TRMS	W	Wirkleistung des Netzes (P = P1 + P2 + P3)
P1	Р	1	TRMS	W	Wirkleistung im Strang 1 (L1 – N)
P2	Р	2	TRMS	W	Wirkleistung im Strang 2 (L2 – N)
P3	Р	3	TRMS	W	Wirkleistung im Strang 3 (L3 – N)
Q	Q		TRMS	var	Blindleistung des Netzes (Q = Q1 + Q2 + Q3)
Q1	Q	1	TRMS	var	Blindleistung im Strang 1 (L1 – N)
Q2	Q	2	TRMS	var	Blindleistung im Strang 2 (L2 – N)
Q3	Q	3	TRMS	var	Blindleistung im Strang 3 (L3 – N)
s	S		TRMS	VA	Scheinleistung des Netzes S
S1	S	1	TRMS	VA	Scheinleistung im Strang 1 (L1 – N)
S2	S	2	TRMS	VA	Scheinleistung im Strang 2 (L2 – N)
S3	S	3	TRMS	VA	Scheinleistung im Strang 3 (L3 – N)
F	F		TRMS	Hz	Frequenz des Netzes
PF	PF		TRMS		Wirkfaktor P / S
PF1	PF	1	TRMS		Wirkfaktor P1 / S1
PF2	PF	2	TRMS		Wirkfaktor P2 / S2
PF3	PF	3	TRMS		Wirkfaktor P3 / S3
QF	QF		TRMS		Blindfaktor Q / S
QF1	QF	1	TRMS		Blindfaktor Q1 / S1
QF2	QF	2	TRMS		Blindfaktor Q2 / S2
QF3	QF	3	TRMS		Blindfaktor Q3 / S3
LF	LF		TRMS		Leistungsfaktor des Netzes
LF1	LF	1	TRMS		Leistungsfaktor
LF2	LF	2	TRMS		Leistungsfaktor
LF3	LF	3	TRMS		Leistungsfaktor
UR1	U	pos	SEQ	V	Spannung Mitsystem
UR2	U	neg	SEQ	V	Spannung Gegensystem
U0	U	zero	SEQ	V	Spannung Nullsystem
IR1	I	pos	SEQ	Α	Strom Mitsystem
IR2	I	neg	SEQ	Α	Strom Gegensystem
10	I	zero	SEQ	Α	Strom Nullsystem
UR2R1	U	neg/pos	UNB	%	Unsymmetriefaktor Spannung: UR2/UR1
IR2R1	I	neg/pos	UNB	%	Unsymmetriefaktor Strom IR2/IR1
U0R1	U	zero/pos	UNB	%	Unsymmetriefaktor Spannung: U0/UR1
I0R1	I	zero/pos	UNB	%	Unsymmetriefaktor Strom I0/IR1

Name	Mess	gröss	en-Identifikation	Einh.	Beschreibung
IMS	I	Ø	-⊕+	Α	Strommittelwert mit Vorzeichen von P
Pst1N	Pst	1N	10min		Kurzzeitflicker U1N, Mittelungszeit 10min.
Pst2N	Pst	2N	10min		Kurzzeitflicker U2N, Mittelungszeit 10min.
Pst3N	Pst	3N	10min		Kurzzeitflicker U3N, Mittelungszeit 10min.
Pst12	Pst	12	10min		Kurzzeitflicker U12, Mittelungszeit 10min.
Pst23	Pst	23	10min		Kurzzeitflicker U23, Mittelungszeit 10min.
Pst31	Pst	31	10min		Kurzzeitflicker U31, Mittelungszeit 10min.
UD	U≤	1N	TRMS	V	Unterabweichung Netzspannung
UD1N	U≤	1N	TRMS	٧	Unterabweichung Spannung U1N
UD2N	U≤	2N	TRMS	V	Unterabweichung Spannung U2N
UD3N	U≤	3N	TRMS	V	Unterabweichung Spannung U3N
UD12	U≤	12	TRMS	V	Unterabweichung Spannung U12
UD23	U≤	23	TRMS	V	Unterabweichung Spannung U23
UD31	U≤	31	TRMS	V	Unterabweichung Spannung U31
OD	U≥	1N	TRMS	٧	Überabweichung Netzspannung
OD1N	U≥	1N	TRMS	V	Überabweichung Spannung U1N
OD2N	U≥	2N	TRMS	V	Überabweichung Spannung U2N
OD3N	U≥	3N	TRMS	V	Überabweichung Spannung U3N
OD12	U≥	12	TRMS	V	Überabweichung Spannung U12
OD23	U≥	23	TRMS	V	Überabweichung Spannung U23
OD31	U≥	31	TRMS	V	Überabweichung Spannung U31

Minimum- und Maximumwerte von Momentanwerten

Name	Messg	rössen-Identifikation			Einh.	Beschreibung		
U_MM	U		TRMS	▲ TS ▼ TS	٧	Minimalwert und Maximalwert von U		
U1N_MM	U	1N	TRMS	▲ TS ▼ TS	V	Minimalwert und Maximalwert von U1N		
U2N_MM	U	2N	TRMS	▲ TS ▼ TS	٧	Minimalwert und Maximalwert von U2N		
U3N_MM	U	3N	TRMS	▲ TS ▼ TS	V	Minimalwert und Maximalwert von U3N		
U12_MM	U	12	TRMS	▲ TS ▼ TS	٧	Minimalwert und Maximalwert von U12		
U23_MM	U	23	TRMS	▲ TS ▼ TS	٧	Minimalwert und Maximalwert von U23		
U31_MM	U	31	TRMS	▲ TS ▼ TS	٧	Minimalwert und Maximalwert von U31		
UNE_MAX	U	NE	TRMS	▲ TS	V	Maximalwert von UNE		
U4C_MAX	U	4C	TRMS	▲ TS	V	Maximalwert von U4C		
I_MAX	I		TRMS	▲ TS	Α	Maximalwert von I		
I1_MAX	I	1	TRMS	▲ TS	Α	Maximalwert von I1		
I2_MAX	I	2	TRMS	▲ TS	Α	Maximalwert von I2		
I3_MAX	I	3	TRMS	▲ TS	Α	Maximalwert von I3		
IN_MAX	I	N	TRMS	▲ TS	Α	Maximalwert von IN		
IPE_MAX	I	PE	TRMS	▲ TS	Α	Maximalwert von IPE		
P_MAX	Р		TRMS	▲ TS	W	Maximalwert von P		
P1 MAX	Р	1	TRMS	▲ TS	W	Maximalwert von P1		
P2 MAX	Р	2	TRMS	▲ TS	W	Maximalwert von P2		
P3 MAX	Р	3	TRMS	▲ TS	W	Maximalwert von P3		
Q_MAX	Q		TRMS	▲ TS	var	Maximalwert von Q		
Q1 MAX	Q	1	TRMS	▲ TS	var	Maximalwert von Q1		
Q2 MAX	Q	2	TRMS	▲ TS	var	Maximalwert von Q2		
Q3_MAX	Q	3	TRMS	▲ TS	var	Maximalwert von Q3		
S_MAX	S		TRMS	▲ TS	VA	Maximalwert von S		
S1_MAX	S	1	TRMS	▲ TS	VA	Maximalwert von S1		
S2_MAX	S	2	TRMS	▲ TS	VA	Maximalwert von S2		
S3_MAX	S	3	TRMS	▲ TS	VA	Maximalwert von S3		
F_MM	F		TRMS	▲ TS	Hz	Minimalwert und Maximalwert von F		
UR21_MAX	U	neg/pos	UNB	▲ TS	%	Maximalwert von UR2/UR1		
IR21_MAX	I	neg/pos	UNB	▲ TS	%	Maximalwert von IR2/IR1		
THD_U_MAX	U		THD	▲ TS	%	Maximalwert THD Spannung U		
THD_U1N_MAX	U	1N	THD	▲ TS	%	Maximalwert THD Spannung U1N		
THD_U2N_MAX	U	2N	THD	▲ TS	%	Maximalwert THD Spannung U2N		
THD_U3N_MAX	U	3N	THD	▲ TS	%	Maximalwert THD Spannung U3N		
THD_U12_MAX	U	12	THD	▲ TS	%	Maximalwert THD Spannung U12		
THD_U23_MAX	U	23	THD	▲ TS	%	Maximalwert THD Spannung U23		
THD_U31_MAX	U	31	THD	▲ TS	%	Maximalwert THD Spannung U31		
TDD_I_MAX	I		TDD	▲ TS	%	Maximalwert TDD Strom		
TDD_I1_MAX	I	1	TDD	▲ TS	%	Maximalwert TDD Strom I1/I		
TDD_I2_MAX	I	2	TDD	▲ TS	%	Maximalwert TDD Strom I2		
TDD_I3_MAX	I	3	TDD	▲ TS	%	Maximalwert TDD Strom I3		

TS: Zeitstempel des Auftretens, z.B. 17.09.2014 11:12:03

Mittelwerte, Trend und Bimetallstrom

Name	Messg	rössen-	-Identifik	cation	Einh.	Beschreibung
M1	(m)	(p)	(q)	Ш	(mu)	Mittelwert 1
M2	(m)	(p)	(q)	Ш	(mu)	Mittelwert 2
	(m)	(p)	(q)	Ш	(mu)	
M11	(m)	(p)	(q)	Ш	(mu)	Mittelwert 11
M12	(m)	(p)	(q)	Ш	(mu)	Mittelwert 12
TR_M1	(m)	(p)	(q)	Ж	(mu)	Trend Mittelwert 1
TR_M2	(m)	(p)	(q)	М	(mu)	Trend Mittelwert 2
	(m)	(p)	(q)	М	(mu)	
TR_M11	(m)	(p)	(q)	М	(mu)	Trend Mittelwert 11
TR_M12	(m)	(p)	(q)	Ж	(mu)	Trend Mittelwert 12
IB	IB			۲	Α	Bimetallstrom im Netz
IB1	IB	1		۲	Α	Bimetallstrom im Leiter L1
IB2	IB	2		Ľ	Α	Bimetallstrom im Leiter L2
IB3	IB	3		۲	Α	Bimetallstrom im Leiter L3

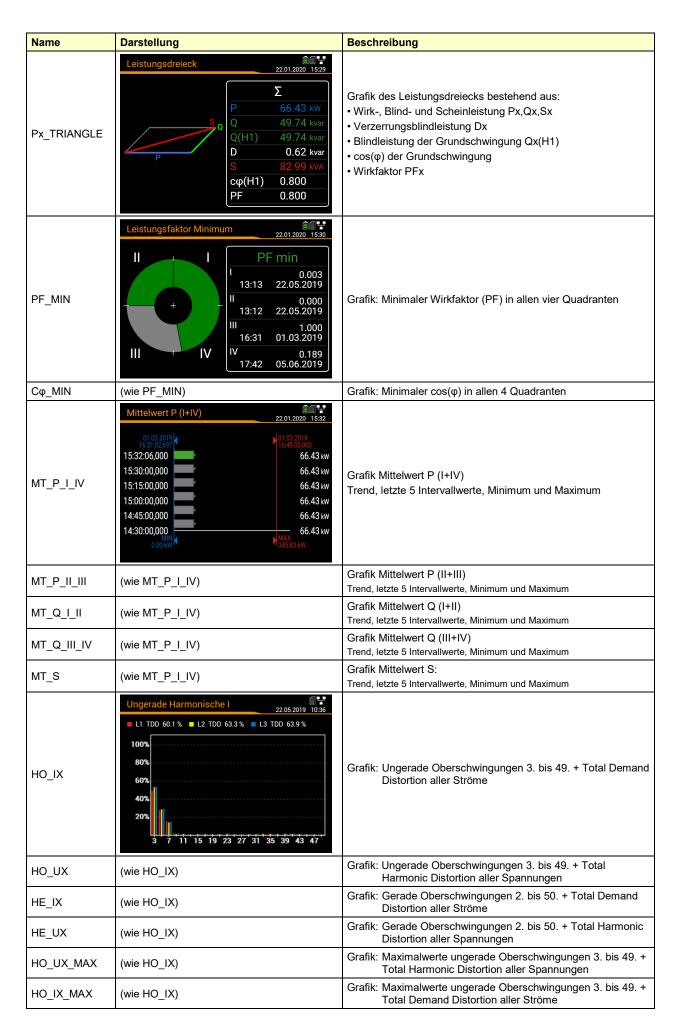
Minimum- und Maximumwerte von Mittelwerten und Bimetallstrom

Name	Messgrössen-Identifikation					Einh.	Beschreibung
M1_MM	(m)	(p)	(q)	Ш	▲ TS ▼ TS		Min/Max Mittelwert 1
M2_MM	(m)	(p)	(q)	Ш	▲ TS ▼ TS		Min/Max Mittelwert 2
	(m)	(p)	(q)	ш	▲ TS ▼ TS		
M11_MM	(m)	(p)	(q)	ш	▲ TS ▼ TS		Min/Max Mittelwert 11
M12_MM	(m)	(p)	(q)	Ш	▲ TS ▼ TS		Min/Max Mittelwert 12
IB_MAX	IB				▲ TS	Α	Maximum Bimetallstrom im Netz
IB1_MAX	IB	1		\vdash	▲ TS	Α	Maximum Bimetallstrom im Leiter L1
IB2_MAX	IB	2		\vdash	▲ TS	Α	Maximum Bimetallstrom im Leiter L2
IB3_MAX	IB	3		r	▲ TS	Α	Maximum Bimetallstrom im Leiter L3

Zähler

Name	Messgrössen-Identifikation				Einh.	Beschreibung
ΣP_I_IV_HT	Р		(1)	ΣΗΤ	Wh	Wirkenergie I+IV, Hochtarif
ΣP_II_III_HT	Р		⊕	ΣΗΤ	Wh	Wirkenergie II+III, Hochtarif
ΣQ_I_II_HT	Q		\oplus	ΣΗΤ	varh	Blindenergie I+II, Hochtarif
ΣQ_III_IV _HT	Q		\oplus	ΣΗΤ	varh	Blindenergie III+IV, Hochtarif
ΣP_I_IV_NT	Р		(ΣLΤ	Wh	Wirkenergie I+IV, Niedertarif
ΣP_II_III _NT	Р		lue	ΣLΤ	Wh	Wirkenergie II+III, Niedertarif
ΣQ_I_II _NT	Q			ΣLΤ	varh	Blindenergie I+II, Niedertarif
ΣQ_III_IV_NT	Q		\oplus	ΣLΤ	varh	Blindenergie III+IV, Niedertarif
ΣMETER1	(m)	(p)	(qg)	Σ(Τ)	(mu)	Freier Zähler 1, Tarif HT oder NT
	(m)	(p)	(qg)	Σ(Τ)	(mu)	
ΣMETER7	(m)	(p)	(qg)	Σ(Τ)	(mu)	Freier Zähler 7, Tarif HT oder NT
ΣQ_I	(m)	(p)	(qg)	Σ(Τ)	(mu)	Blindenergie I, Tarif HT oder NT
ΣQ_II	(m)	(p)	(qg)	Σ(Τ)	(mu)	Blindenergie I, Tarif HT oder NT
ΣQ_III	(m)	(p)	(qg)	Σ(Τ)	(mu)	Blindenergie I, Tarif HT oder NT
ΣQ_IV	(m)	(p)	(qg)	Σ(Τ)	(mu)	Blindenergie I, Tarif HT oder NT
ΣS	(m)	(p)	(qg)	Σ(Τ)	(mu)	Scheinenergie I, Tarif HT oder NT

(m): Messgrössen-Kurzbezeichnung, z.B. "P"


(p): Phasenbezug der gewählten Messgrösse, z.B. "1"

(q): Quadranteninformation, z.B. "I+IV"

(qg): Grafische Quadranteninformation, z.B.

(T): Zugehöriger Tarif, z.B. "HT" oder "LT" (NT)

(mu): Einheit der Basis-Messgrösse

HE_UX_MAX	(wie HO_IX)	Grafik: Maximalwerte gerade Oberschwingungen 2. bis 50. + Total Harmonic Distortion aller Spannungen
HE_IX_MAX	(wie HO_IX)	Grafik: Maximalwerte gerade Oberschwingungen 2. bis 50. + Total Demand Distortion aller Ströme
PHASOR	Vektordiagramm 22.01.2020 15:34 L1 L2 L3 230.57 230.69 230.59 V 0.00 -119.99 120.06 ° 120.08 119.99 119.78 A -36.7 -36.8 -36.9 ° 0.801 0.800 0.800 PF	Grafik: Alle Strom- und Spannungsvektoren mit aktueller Belastungsinformation

B1 Anzeige-Matrizen Einphasennetz

Anzeigemenü	Zugehörige Ma	atrix			
Momentanwerte	U UNE F I IN IMS	U_MM UNE_MAX F_MM I_MAX IN_MAX	Pst1N	UD OD	
Wolfiellalweite	P Q S PF P_TRIANGLE	P_MAX Q_MAX S_MAX]		
Energie Zählerstände Standard-Zähler	ΣΡ_I_IV_HT ΣΡ_I_IV_NT ΣΡ_II_III_NT ΣΡ_II_III_HT ΣQ_I_II_HT ΣQ_I_II_NT ΣQ_III_IV_HT ΣQ_I_II_NT				
Energie Zählerstände Freie Zähler	XMETER1 ΣMETER2 ΣMETER3 ΣMETER4 ΣMETER5 ΣMETER6 ΣMETER7 ΣQ_I ΣQ_II ΣQ_III ΣQ_IV ΣS				
Energie Mittelwerte Leistungs-Mittelwerte + Trend	MT_P_I_IV	MT_P_II_III MT	_Q_I_II	MT_Q_III_IV	MT_S
Energie Mittelwerte Freie Mittelwerte + Trend	M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12	TR_M1 TR_M2 TR_M3 TR_M4 TR_M5 TR_M6 TR_M7 TR_M8 TR_M8 TR_M8 TR_M9 TR_M10 TR_M11 TR_M12	M1_MM M2_MM M3_MM M4_MM M5_MM M6_MM M7_MM M8_MM M9_MM M10_MM M11_MM		
Bimetallstrom	IB IB_MAX				

B2 Anzeige-Matrizen Split-phase (Zweiphasen-Netz)

Anzeigemenü	Zugehörige Ma	atrix					
	U1N U2N U UNE I1 I2 IN IPE P Q F PF P_TRIANGLE PF_MIN	U1N_MM U2N_MM U_MM UNE_MAX I1_MAX I2_MAX IN_MAX IPE_MAX P1 P2 Q1 Q2 P1_TRIANGLE C\(\pi_Min \)	Pst1N Pst2N P_MAX Q_MAX S_MAX F_MM P2_TRIANO	UD12 UD1N UD2N	OI	× ×	
Energie Zählerstände Standard-Zähler	ΣΡ_I_IV_HT ΣΡ_I_IV_NT ΣΡ_II_III_NT ΣΡ_II_III_HT ΣQ_I_II_HT ΣQ_I_II_NT ΣQ_III_IV_HT ΣQ_I_II_NT						
Energie Zählerstände Freie Zähler	SMETER1 SMETER2 SMETER3 SMETER4 SMETER5 SMETER6 SMETER7 SQ_I SQ_II SQ_III SQ_IIV SS						
Energie Mittelwerte Leistungs-Mittelwerte + Trend	MT_P_I_IV I	MT_P_II_III MT	Г_Q_I_II	MT_Q_	_III_IV	MT_S	
Energie Mittelwerte Freie Mittelwerte + Trend	M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12	TR_M1 TR_M2 TR_M3 TR_M4 TR_M5 TR_M6 TR_M6 TR_M7 TR_M8 TR_M9 TR_M10 TR_M11 TR_M12	M1_MM M2_MM M3_MM M4_MM M5_MM M6_MM M7_MM M8_MM M9_MM M10_MM M11_MM M12_MM				
Energie Bimetallstrom	IB1 IB2 IB1_MAX IB2_MAX						

B3 Anzeige-Matrizen Dreiphasennetz gleichbelastet

Anzeigemenü	Zugehörige Matrix
	U12 U4C U12_MM UR1 Pst12 UD12 OD12 U23_MM UR2 Pst23 UD23 OD23 U31_F MM UR2R1 UR21_MAX UR21_MAX
Momentanwerte	I I_MAX IMS 1) Nur falls Messung der homopolaren Spannung aktiviert P P_MAX Q Q MAX S S_MAX PF P_TRIANGLE PF_MIN
Energie Zählerstände Standard-Zähler	ΣΡ_I_IV_HT ΣΡ_I_IV_NT ΣΡ_II_III_NT ΣΡ_II_III_HT ΣQ_I_II_HT ΣQ_I_II_NT ΣQ_III_IV_HT ΣQ_I_II_NT
Energie Zählerstände Freie Zähler	ΣΜΕΤΕR1 ΣΜΕΤΕR2 ΣΜΕΤΕR3 ΣΜΕΤΕR4 ΣΜΕΤΕR5 ΣΜΕΤΕR6 ΣΜΕΤΕR7 ΣQ_I ΣQ_II ΣQ_III ΣQ_IV ΣS
Energie Mittelwerte Leistungs-Mittelwerte + Trend	MT_P_I_IV MT_P_II_III MT_Q_I_II MT_Q_III_IV MT_S
Energie Mittelwerte Freie Mittelwerte + Trend	M1 TR_M1 M1_MM M2 TR_M2 M2_MM M3 TR_M3 M3_MM M4 TR_M4 M4_MM M5 TR_M5 M5_MM M6 TR_M6 M6_MM M7 TR_M7 M7_MM M8 TR_M8 M8_MM M9 TR_M9 M9_MM M10 TR_M10 M10_MM M11 TR_M11 M11_MM M12 TR_M12 M12_MM
Energie Bimetallstrom	IB IB_MAX

B4 Anzeige-Matrizen Dreiphasennetz ungleichbelastet

Anzeigemenü	Zugehörige M	Matrix					
	U12 U23 U31 F I1 I2 I3	1) U2 U3 F_ I1_MAX I2_MAX I3_MAX	2_MM 3_MM 1_MM MM IR1 IR2 IR2	R1	Pst12 Pst23 Pst31 Nur falls Me Spannung		OD12 OD23 OD31
Momentanwerte	PE P Q S PF P_TRIANGLE PF_MIN	PE_MAX P_MAX Q_MAX S_MAX Cφ_MIN	IR2	1_MAX			
Energie Zählerstände Standard-Zähler	ΣΡ_I_IV_HT ΣΡ_I_IV_NT ΣΡ_II_III_NT ΣΡ_II_III_HT ΣQ_I_II_NT ΣQ_I_II_NT ΣQ_III_IV_HT ΣQ_I_II_NT						
Energie Zählerstände Freie Zähler	ΣMETER1 ΣMETER2 ΣMETER3 ΣMETER4 ΣMETER5 ΣMETER6 ΣMETER7 ΣQ_I ΣQ_II ΣQ_III ΣQ_IV ΣS						
Energie Mittelwerte Leistungs-Mittelwerte + Trend	MT_P_I_IV	MT_P_II_	_III N	lT_Q_I_II	MT_Q_III_	_IV MT_	S
Energie Mittelwerte Freie Mittelwerte + Trend	M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11	TR_M1 TR_M2 TR_M3 TR_M4 TR_M5 TR_M6 TR_M6 TR_M7 TR_M8 TR_M8 TR_M8 TR_M1 TR_M1 TR_M1	0	M1_MM M2_MM M3_MM M4_MM M5_MM M6_MM M7_MM M8_MM M9_MM M10_MM M11_MM			
Energie Bimetallstrom	IB1 IB2 IB3	IB1_MA IB2_MA IB3_MA	ΑX				

B5 Anzeige-Matrizen Dreiphasennetz ungleichbelastet, Aron

Anzeigemenü	Zugehörige Matrix
Momentanwerte	U12 U4C U12_MM UR1 Pst12 UD12 OD12 U23 U31 U31_MM UR2 Pst23 UD23 OD23 U31_MM UR2R1 Pst31 UD31 OD31 I1 I1_MAX I2_MAX I3_MAX Nur falls Messung der homopolaren I3 I3_MAX Spannung aktiviert P P_MAX S_MAX PF P_TRIANGLE PF_MIN Cφ_MIN
Energie Zählerstände Standard-Zähler	ΣΡ_I_IV_HT ΣΡ_I_IV_NT ΣΡ_II_III_NT ΣΡ_II_III_HT ΣQ_I_II_NT ΣQ_III_IV_HT ΣQ_I_II_NT
Energie Zählerstände Freie Zähler	ΣΜΕΤΕR1 ΣΜΕΤΕR2 ΣΜΕΤΕR3 ΣΜΕΤΕR4 ΣΜΕΤΕR5 ΣΜΕΤΕR6 ΣΜΕΤΕR7 ΣQ_I ΣQ_II ΣQ_III ΣQ_IV ΣS
Energie Mittelwerte Leistungs-Mittelwerte + Trend	MT_P_I_IV MT_P_II_III MT_Q_I_II MT_Q_III_IV MT_S
Energie Mittelwerte Freie Mittelwerte + Trend	M1 TR_M1 M1_MM M2 TR_M2 M2_MM M3 TR_M3 M3_MM M4 TR_M4 M4_MM M5 TR_M5 M5_MM M6 TR_M6 M6_MM M7 TR_M7 M7_MM M8 TR_M8 M8_MM M9 TR_M9 M9_MM M10 TR_M10 M10_MM M11 TR_M11 M11_MM M12 TR_M12 M12_MM
Energie Bimetallstrom	IB1

B6 Anzeige-Matrizen Vierleiternetz ungleichbelastet

Anzeigemenü	Zugehörige Matrix
	U1N U12 U1N_MM U12_MM UR1
Momentanwerte	U2N U3N U3N U31 U3N_MM UNE U23_MM U31_MM U31_MM UR2 UD2N UD23 UD23 UD31 OD2N OD33 OD31 IN UNE F F FMM UR21_MAX UNB_UR2_UR1 IN MAX IR1 IR1 IR2 IR2 IR2 IR3 IMS IR3 IMS IR3 IMS IR3 IR3_MAX IR21_MAX IR2 IR2 IR3 IR3_MAX I
Energie Zählerstände Standard-Zähler	ΣΡ_I_IV_HT ΣΡ_I_IV_NT ΣΡ_II_III _NT ΣΡ_II_III _NT ΣΡ_II_III _HT ΣQ_I_II _NT ΣQ_III_INT ΣQ_III_INT ΣQ_III_I _NT
Energie Zählerstände Freie Zähler	ΣΜΕΤΕR1 ΣΜΕΤΕR2 ΣΜΕΤΕR3 ΣΜΕΤΕR4 ΣΜΕΤΕR5 ΣΜΕΤΕR6 ΣΜΕΤΕR7 ΣQ_I ΣQ_II ΣQ_III ΣQ_IV ΣS
Energie Mittelwerte Leistungs-Mittelwerte + Trend	MT_P_I_IV MT_P_II_III MT_Q_I_II MT_Q_III_IV MT_S
Energie Mittelwerte Freie Mittelwerte + Trend	M1 TR_M1 M1_MM M2 TR_M2 M2_MM M3 TR_M3 M3_MM M4 TR_M4 M4_MM M5 TR_M5 M5_MM M6 TR_M6 M6_MM M7 TR_M7 M7_MM M8 TR_M8 M8_MM M9 TR_M9 M9_MM M10 TR_M10 M10_MM M11 TR_M11 M11_MM M12 TR_M12 M12_MM
Energie Bimetallstrom	IB1

C Logikfunktionen

Die prinzipielle Funktion der Verknüpfungen ist der Einfachheit halber für Bausteine mit nur 2 Eingängen dargestellt.

Funktion	Symbol	Ältere Symbole ANSI 91-1984 DIN 40700 (alt)		Wahrheits- tabelle	Klartext
AND	A — & B — Y	A	A	A B Y 0 0 0 0 1 1 0 1 1 1	Funktion ist wahr falls alle Eingangsbedingungen erfüllt sind
NAND	A — & D—Y	A-D0-Y	А — Y	A B Y 0 0 1 0 1 1 1 0 1 1 1 0	Funktion ist wahr falls mindestens eine der Eingangsbedingungen nicht erfüllt ist
OR	A ≥1 Y	A B	A B	A B Y 0 0 0 0 1 1 1 0 1 1 1 1	Funktion ist wahr falls mindestens eine der Eingangsbedingungen erfüllt ist
NOR	A ≥1 ⊃- Y	A DO-Y	B Y	A B Y 0 0 1 0 1 0 1 0 0 1 1 0	Funktion ist wahr falls keine der Eingangsbedingungen erfüllt ist

DIRECT und INVERT erlauben einen Eingang direkt mit dem Ausgang einer Überwachungsfunktion zu verbinden, ohne dass eine logische Verknüpfung erforderlich ist. Für diese Funktionen wird nur ein Eingang verwendet.

DIRECT	A — ×	A Y 0 0 1 1	Die Überwachungsfunktion wird auf einen Eingang reduziert. Der Zustand des Ausgangs entspricht dem Eingang.
INVERT	A = 1 p Y	A Y 0 1 1 0	Die Überwachungsfunktion wird auf einen Eingang reduziert. Der Zustand des Ausgangs entspricht dem invertierten Eingang.

D FCC statement

The following statement applies to the products covered in this manual, unless otherwise specified herein. The statement for other products will appear in the accompanying documentation.

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules and meets all requirements of the Canadian Interference-Causing Equipment Standard ICES-003 for digital apparatus. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/T.V. technician for help.

Camille Bauer AG is not responsible for any radio television interference caused by unauthorized modifications of this equipment or the substitution or attachment of connecting cables and equipment other than those specified by Camille Bauer AG. The correction of interference caused by such unauthorized modification, substitution or attachment will be the responsibility of the user.

Stichwortverzeichnis

A	
Alarmierung	52
Anzeige-Matrizen	89
В	
Bedienelemente	
Blindleistung	83
С	
cosφ	
Cyber Security Ausserbetriebnahme	
Cyber Security Hinweise	
F	
Elektrische Anschlüsse	
Analogausgang	20
Aron-Schaltung	
Digitalausgang	
Digitaleingang Eingänge	
Hilfsenergie	
Leiterquerschnitte	
Modbus-Schnittstelle	
Split phase Ethernet installation	
	2 <i>1</i>
F	_
FCC statement	
	30
G	7
Geräte-Übersicht	
	22
Geräte-Übersicht	22
Geräte-ÜbersichtGPSGrundschwingungsblindleistung	22 81
Geräte-Übersicht	22 81
Geräte-Übersicht	22 81 37
Geräte-Übersicht	22 81 37 42
Geräte-Übersicht	22 81 37 42 31 24
Geräte-Übersicht	22 81 37 42 31 24 73
Geräte-Übersicht	22 81 37 42 31 24 73
Geräte-Übersicht	22 81 37 42 31 24 73
Geräte-Übersicht	22 81 37 42 31 24 73 23
Geräte-Übersicht	22 81 37 42 31 24 73 23
Geräte-Übersicht	22 81 37 42 31 24 73 23
Geräte-Übersicht	22 81 37 42 31 24 73 23 44 64
Geräte-Übersicht	22 81 37 42 31 24 73 23 44 64
Geräte-Übersicht GPS Grundschwingungsblindleistung H HTTPS I, II, III, IV IEC61850 Inbetriebnahme Instandhaltung und Wartung IRIG-B K Konfiguration Menü Konformitätsbericht L Lieferumfang Logikbausteine AND	22 81 37 42 31 24 73 23 44 64 5
Geräte-Übersicht	22 81 37 42 31 24 73 23 44 64 5
Geräte-Übersicht GPS Grundschwingungsblindleistung H HTTPS I I, II, III, IV IEC61850 Inbetriebnahme Instandhaltung und Wartung IRIG-B K Konfiguration Menü Konformitätsbericht L Lieferumfang Logikbausteine AND DIRECT INVERT I	22 81 37 42 31 24 73 23 44 64 5
Geräte-Übersicht	22 81 37 42 31 24 73 23 44 64 5 01 01 01
Geräte-Übersicht GPS Grundschwingungsblindleistung H HTTPS I I, II, III, IV IEC61850 Inbetriebnahme Instandhaltung und Wartung IRIG-B K Konfiguration Menü Konformitätsbericht L Lieferumfang Logikbausteine AND DIRECT 1 INVERT 1 NAND 1	22 81 37 42 31 24 73 23 44 64 01 01 01 01 01

M	
Masszeichnung	.80
Mechanischer Einbau	
Menübedienung	
Messgrössen	.81
Bimetallstrom	
Grundgrössen	
Leistungsfaktoren	
Mittelwerte und Trend	
Netz-Unsymmetrie	
Nullpunkt-Verlagerungsspannung	
Oberschwingungs-Analyse	
Zähler	
Messwertanzeigen	.42
Messwerte Rücksetzen	۷3
	. + 0
N	
Netz-Unsymmetrie	
NTP	
Nullpunktunterdrückung	.76
Р	
PQ-Easy Report	.64
PQ-Ereignisaufzeichnungen	
PQ-Statistik	.62
PQ-Überwachung	.48
R	
Römische Zahlen	.42
Rücksetzen von Messwerten	
S	
Sammelalarm	.54
Sicherheitshinweise	
Sicherheitssystem32,	
Simulation	
Symbole	
Symmetrische Komponenten	.86
SYSLOG	.40
Т	
Technische Daten	.74
U	
Überprüfen der Installation	.25
	.53
USV (Unterbrechungsfreie Stromversorgung)	
	۱ 2۰
V	_
Verzerrungsblindleistung	.81
W	
Whitelist	.37
Z	
Zeitsynchronisation	
GPS	.22
IRIG-B	.23
NTP	.29