Geräte Handbuch SIRAX BT5500

Betriebsanleitung SIRAX BT5500

Camille Bauer Metrawatt AG Aargauerstrasse 7 CH-5610 Wohlen/Schweiz

Tel: +41 56 618 21 11 Fax: +41 56 618 21 21

info@cbmag.com www.camillebauer.com

Inhaltsverzeichnis

1. Rechtliche Hinweise	
1.1 Sicherheits- und Warnhinweise	
1.2 Qualifiziertes Personal	
1.3 Bestimmungsgemässer Gebrauch	
1.4 Haftungsausschluss	
1.5 Rückmeldung	
1.6 Reparaturen und Änderungen	
1.7 Kalibration und Neuabgleich 1.8 Reinigung	
1.9 Entsorgung	
1.10 Rücksendung	
·	
2. Einleitung	
2.1 Bestimmung des Dokuments	
2.2 Lieferumfang	
2.3 Weitere Unterlagen	4
3. Funktionsbeschreibung	4
3.1 Messgrössen gemessen und gerechnet	4
4. Mechanische Montage und Installation	_
4.1 Montage	5
4.2 Demontage des Gerätes	
•	
5. Details zu Klemme und elektrischen Anschlüssen	
5.1 Allgemeine Warnhinweise	
5.2 Leiterquerschnitte und Drehmomente	
5.3 LED-, Klemmen- und Anschlussdetails	
5.4 Hilfsenergie	
5.5 Modbus-Schnittstelle RS485	8
6. Inbetriebnahme	8
7. Programmierung	۵
7.1 Konfiguration des Messumformers	
7.1.1 Einstellung der Übertragungsparameter	
7.1.2 Einstellung der Messparameter	
7.1.3 Löschen von Wattstundenzählern und Extremwerten	
7.1.4 Einstellung der Alarmparameter	
7.1.5 Einrichtung der Analogausgangsparameter	
7.1.6 Wiederherstellung der Herstellerparameter	
7.1.7 Messwerte	
7.1.8 Minimal- und Maximalwerte	14
7.1.9 Archiv des Leistungsprofils	
7.1.10 Fehlercodes	14
B. Technische Spezifikationen	15
·	
9. Schnittstellendefinition Modbus (RS485)	18
10. Beispiele für Geräteprogrammierung	26
10.1 Beispiel 1 - Programmierung eines Alams 1 mit Hysterese	
10.2 Beispiel 2 - Konfiguration des Alams bei Überschreitung der bestellten Leistung	
10.3 Beispiel 3 - Programmieren eines unidirektionalen Dauerausgangs 1	
10.4 Beispiel 4 - Programmieren eines bidirektionalen Dauerausgangs 1	28

1. Rechtliche Hinweise

1.1 Sicherheits- und Warnhinweise

In diesem Dokument werden Sicherheits- und Warnhinweise verwendet, welche zur persönlichen Sicherheit und Vermeidung von Sachschäden befolgt werden müssen.

Ein Nichtbeachten führt zu Tod oder schwerer Körperverletzung.

Ein Nichtbeachten kann zu Sach- oder Personenschäden führen.

Ein Nichtbeachten kann dazu führen, dass das Gerät nicht die erwartete Funktionalität erfüllt oder beschädigt wird.

Die Installation und Inbetriebnahme darf nur durch geschultes Personal erfolgen. Überprüfen Sie vor der Inbetriebnahme, dass:

- die maximalen Werte aller Anschlüsse nicht überschritten werden, siehe Kapitel "Technische Daten",
- die Anschlussleitungen nicht beschädigt und bei der Verdrahtung spannungsfrei sind
- Energierichtung und Phasenfolge stimmen.

Das Gerät muss ausser Betrieb gesetzt werden, wenn ein gefahrloser Betrieb (z.B. sichtbare Beschädigungen) nicht mehr möglich ist. Dabei sind alle Anschlüsse abzuschalten. Das Gerät ist an unser Werk bzw. an eine durch uns autorisierte Servicestelle zu schicken.

Ein Öffnen des Gehäuses bzw. Eingriff in das Gerät ist verboten. Das Gerät hat keinen eigenen Netzschalter. Achten Sie darauf, dass beim Einbau ein gekennzeichneter Schalter in der Installation vorhanden ist und dieser vom Benutzer leicht erreicht werden kann.

Bei einem Eingriff in das Gerät erlischt der Garantieanspruch.

Es ist zu beachten, dass die auf dem Typenschild angegebenen Daten eingehalten werden!

Es sind die landesüblichen Vorschriften bei der Installation und Auswahl des Materials der elektrischen Leitungen zu befolgen!

1.2 Qualifiziertes Personal

Das in diesem Dokument beschriebene Produkt darf nur von Personal gehandhabt werden, welches für die jeweilige Aufgabenstellung qualifiziert ist. Qualifiziertes Personal hat die Ausbildung und Erfahrung um Risiken und Gefährdungen im Umgang mit dem Produkt erkennen zu können. Es ist in der Lage die enthaltenen Sicherheits- und Warnhinweise zu verstehen und zu befolgen.

1.3 Bestimmungsgemässer Gebrauch

Das in diesem Dokument beschriebene Produkt darf nur für den von uns beschriebenen Anwendungszweck eingesetzt werden. Die in den technischen Daten angegebenen maximalen Anschlusswerte und zulässigen Umgebungsbedingungen müssen dabei eingehalten werden. Für den einwandfreien und sicheren Betrieb des Gerätes wird sachgemässer Transport und Lagerung sowie fachgerechte Lagerung, Montage, Installation, Bedienung und Wartung vorausgesetzt.

1.4 Haftungsausschluss

Der Inhalt dieses Dokuments wurde auf Korrektheit geprüft. Es kann trotzdem Fehler oder Abweichungen enthalten, so dass wir für die Vollständigkeit und Korrektheit keine Gewähr übernehmen. Dies gilt insbesondere auch für verschiedene Sprachversionen dieses Dokuments. Dieses Dokument wird laufend überprüft und ergänzt. Erforderliche Korrekturen werden in nachfolgende Versionen übernommen und sind via unsere Webpage www.camillebauer.com verfügbar.

1.5 Rückmeldung

Falls Sie Fehler in diesem Dokument feststellen oder erforderliche Informationen nicht vorhanden sind, melden Sie dies bitte via E-Mail an: customer-support@camillebauer.com

1.6 Reparaturen und Änderungen

Reparatur und Änderungen dürfen ausschließlich vom Hersteller durchgeführt werden. Öffnen Sie das Gehäuse des Gerätes nicht. Falls irgendwelche unbefugten Änderungen am Gerät vorgenommen werden, erlischt der Garantieanspruch. Für Geräte, die nicht im Werk geöffnet wurden, kann keine Gewährleistung oder Garantie übernommen werden. Wir behalten uns das Recht vor, das Produkt für Verbesserungen zu verändern.

1.7 Kalibration und Neuabgleich

Jedes Gerät wird vor der Auslieferung abgeglichen und geprüft. Der Auslieferungszustand wird erfasst und in elektronischer Form abgelegt. Die Messunsicherheit von Messgeräten kann sich während des Betriebs ändern, falls z.B. die spezifizierten Umgebungsbedingungen nicht eingehalten werden.

1.8 Reinigung

Die Geräte sollten in regelmässigen Abständen gereinigt werden. Verwenden Sie dazu ein trockenes oder leicht angefeuchtetes Tuch.

1.9 Entsorgung

Geräte dürfen nur fachgerecht entsorgt werden!

Die Entsorgung der Geräte und Bestandteile darf nur unter Einhaltung guter professioneller Praktiken und nationaler Vorschriften entsorgt werden. Eine falsche Entsorgung kann die Umwelt gefährden.

1.10 Rücksendung

Alle an Camille Bauer Metrawatt AG gesandten Geräte müssen frei von allen gefährlichen Verunreinigungen sein (Säuren, Laugen, Lösungsmitteln, usw.). Benutzen Sie die Originalverpackung oder eine geeignete Transportverpackung zur Rücksendung des Geräts.

Beschädigung bei der Rücksendung

Für Schäden, die durch eine unsachgemäße Rücksendung hervorgerufen werden, wird keine Gewährleistung oder Garantie übernommen.

2. Einleitung

2.1 Bestimmung des Dokuments

Dieses Dokument beschreibt das programmierbare multifunktionale Messgerät SIRAX BT5500. Es richtet sich an: Installateure und Inbetriebsetzer, Service- und Wartungspersonal, Planer

Scope

Dieses Handbuch gilt für alle Versionen des programmierbaren multifunktionalen Messgeräts SIRAX BT5500. Einige der in diesem Dokument beschriebenen Funktionen sind nur verfügbar, wenn die erforderlichen optionalen Komponenten im Gerät enthalten sind.

Vorkenntnisse

Allgemeine Kenntnisse auf dem Gebiet der Elektrotechnik sind erforderlich. Für die Montage und Installation des Geräts sind Kenntnisse der geltenden nationalen Sicherheitsvorschriften und Installationsnormen erforderlich.

2.2 Lieferumfang

- Messumformer SIRAX BT5500
- · Sicherheitshinweise (mehrsprachig)

2.3 Weitere Unterlagen

Folgende weitere Dokumente zum Gerät sind elektronisch via www.camillebauer.com verfügbar:

- Datenblatt (de. en)
- Sicherheitshinweise (mehrsprachig)
- Betriebsanleitung (de, en)

3. Funktionsbeschreibung

Der SIRAX BT5500 ist ein programmierbarer multifunktionaler Messumformer zur Messung von Parametern in einem dreiphasigen 3- oder 4-Leiter-Wechselstromnetzes. Er stellt die Umwandlung von Messgrössen in analoge Standardsignale sicher. Die Ausgangssignale sind von den Eingangssignalen und der Versorgung galvanisch getrennt.

Er lässt sich über die RS485-Schnittstelle mit Modbus RTU oder über die USB-Schnittstelle mit der Konfigurationssoftware parametrieren. Die Relaisausgänge signalisieren den Überlauf der ausgewählten Messgrössen und der Impulsausgang kann zur Verbrauchsüberwachung der Wirkenergie verwendet werden.

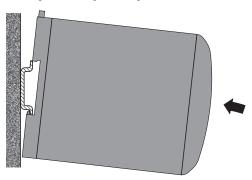
3.1 Messgrössen gemessen und gerechnet

• Spannung im Netz	U	 Blind-/Wirkverhältnis der Leistungsfaktoren 	tgφ1, tgφ2, tgφ3
Spannung pro Phase	U1, U2, U3	Mittlere Wirkleistung (z.B. 150 min)	Pav
Spannung Phase zu Phase	U12, U23, U31	Spannungswerte THD pro Phase	U1, U2, U3
Mittlere Spannung Phase-Phase	UPP	Stromwerte THD pro Phase	11, 12, 13
• Strom im Netz	1	Phasen φ	φ1, φ2, φ3
Strom pro Phase	11, 12, 13	• 3-Phasenwerte cosφ	COSφ
• Wirk-, Blind- und Scheinleistung des Netzes	P, Q, S	 Phasenwerte cosφ 	
Wirkleistung pro Phase	P1, P2, P3	Strom im Neutralleiterdraht (berechnet)	In
Blindleistung pro Phase	Q1, Q2, Q3	3-phasige Wirk- und Blindenergie	Ept, Eqt
Scheinleistung pro Phase	S1, S2, S3	Frequenz des Netzes	f
Mittelwert Leistungsfaktor	Pf, tgφ	Energieverbrauch - Power Guard	Pord
Leistungsfaktor pro Phase	Pf1, Pf2, Pf3		

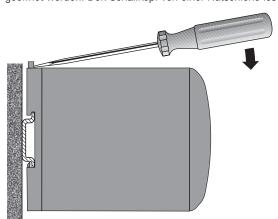
4. Mechanische Montage und Installation

Der SIRAX BT5500 kann entweder auf einer DIN-Schiene oder mit einer Montageplatte direkt an einer Wand montiert werden.

Bei der Festlegung des Montageortes ist zu beachten, dass die Grenzen der Betriebstemperatur nicht überschritten werden: **–10 ... +55° C**



Mit der Installation wird das Gerät Teil einer Starkstromeinrichtung, welche nach länderspezifischen Vorschriften so erstellt, betrieben und unterhalten werden muss, dass die Installation sicher ist und Brände und Explosionen so weit als möglich verhindert werden. Es ist Aufgabe dieser Starkstromeinrichtung sicherzustellen, dass gefährliche Anschlüsse des Gerätes während des Betriebs nicht berührt werden können und der Ausbreitung von Flammen, Hitze und Rauch aus dem Innern der Starkstromeinrichtung vorgebeugt wird. Dies kann durch Bereitstellung einer Umhüllung (z.B. Gehäuse, Schaltschrank) geschehen oder die Nutzung eines Raumes, der nur für qualifiziertes Personal zugänglich ist und den lokalen Brandschutznormen entspricht.


4.1 Montage

Beliebige Einbaulage ist möglich. Das Gerät kann auf eine DIN Rail Hutschiene gemäss EN 50022 aufgeschnappt werden.

4.2 Demontage des Gerätes

Für die Demontage des Geräts müssen alle angeschlossenen Kabel stromlos sein. Entfernen Sie zuerst alle Push-Klemmen und die Drähte der Strom- und Spannungseingänge. Stellen Sie sicher, dass mögliche Stromwandler kurzgeschlossen sind, bevor die Stromanschlüsse am Gerät geöffnet werden. Den Schallkopf von einer Hutschiene lösen.

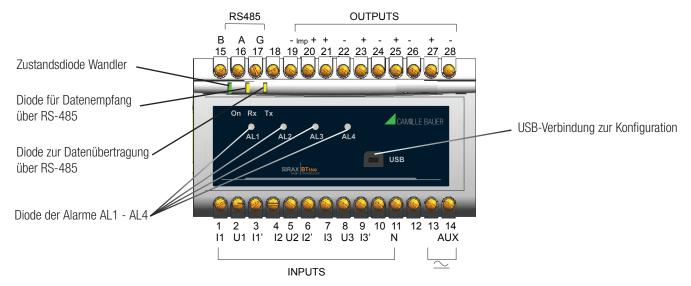
5. Details zu Klemme und elektrischen Anschlüssen

Unbedingt sicherstellen, dass die Leitungen beim Anschliessen spannungsfrei sind

5.1 Allgemeine Warnhinweise

Es ist zu beachten, dass die auf dem Typenschild angegebenen Daten eingehalten werden!

Es sind die landesüblichen Vorschriften bei der Installation und Auswahl des Materials der elektrischen Leitungen zu befolgen!


Symbol	Bedeutung
	Geräte dürfen nur fachgerecht entsorgt werden.
	Doppelte Isolierung, Gerät der Schutzklasse 2.
CATIII	Messkategorie CAT III für Spannungseingänge und Hilfsenergie.
CE	CE-Konformitätszeichen. Das Gerät erfüllt die Bedingungen der zutreffenden EG-Richtlinien. Siehe Konformitätserklärung.
\triangle	Achtung! Allgemeine Gefahrenstelle. Betriebsanleitung beachten.
Ą	Achtung: Lebensgefahr!
	Bitte beachten.

5.2 Leiterquerschnitte und Drehmomente

Eingänge U1(2), U2(5), U3(8), N(11), I1(1/3), I2(4/6), I3(7/9), Hilfsenergie (13/14), RS485-Anschluss (15(B)/16(A)/17(G)), Ausgänge (19-28)

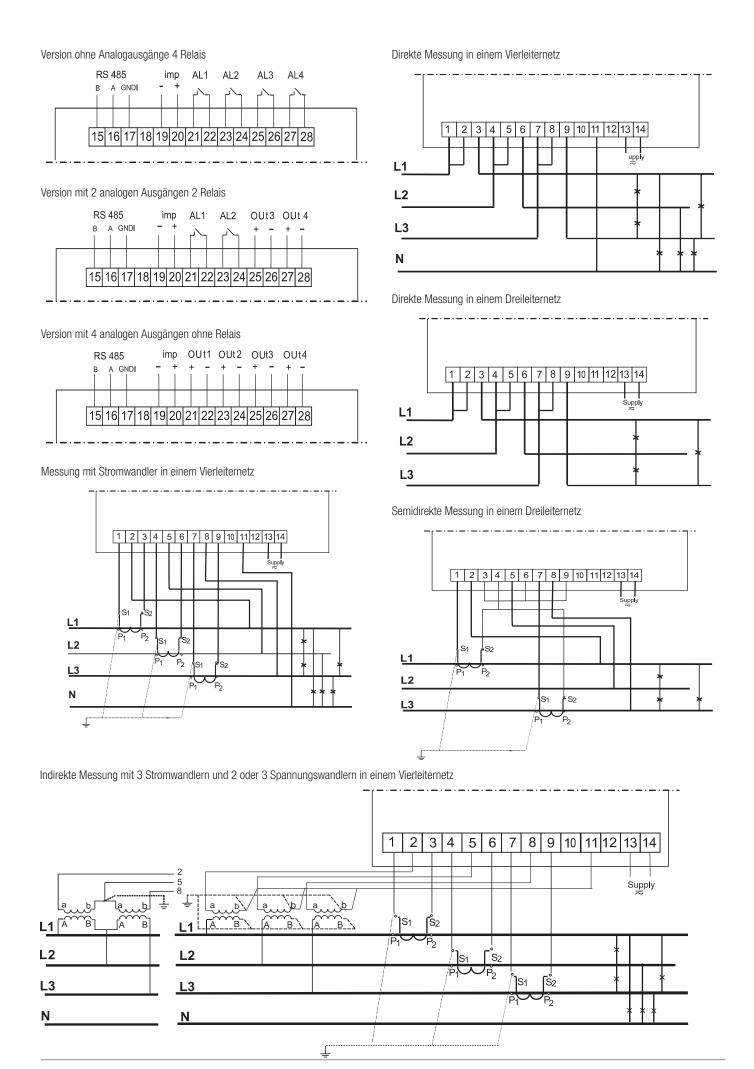
- Eindrähtig: ≤ 4,0mm² oder Feindrähtig mit Adern-Endhülsen: 2 x 2,5mm²
- Drehmoment: 0,5 ... 0,6Nm oder 4,42 ... 5,31 lbf in

5.3 LED-, Klemmen- und Anschlussdetails

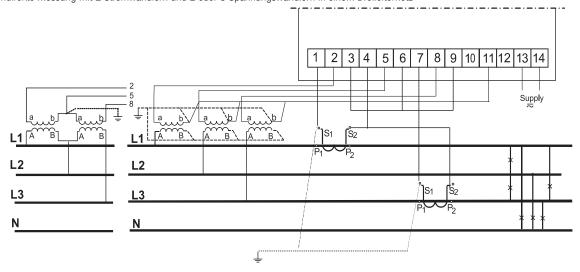
LED Anzeige

LED	Status	Bezeichnung
ON	Grün kontinuierlich	Hilfsversorgung in einwandfreiem Zustand und Kalibrierung in Ordnung
Rx	Blinkend	Datenempfang über RS-485
Тх	Blinkend	Datenübertragung über RS-485
AL1 AL4	Kontinuierlich ON	Alarm ON

Eingänge



Alle Spannungs-Messeingänge müssen durch Stromunterbrecher oder Sicherungen von 1 A oder weniger abgesichert werden. Dies gilt nicht für den Neutralleiter. Es muss eine Methode bereitgestellt werden, welche erlaubt das Gerät spannungsfrei zu schalten, wie z.B. ein deutlich gekennzeichneter Stromunterbrecher oder abgesicherter Trennschalter.


Bei Verwendung von Spannungswandlern dürfen deren Sekundär-Anschlüsse niemals kurzgeschlossen werden.

Den Strommesseingängen darf keine Sicherung vorgeschaltet sein!

Bei Verwendung von Stromwandlern müssen die Sekundärstecker während der Installation und vor dem Entfernen des Geräts kurzgeschlossen werden. Öffnen Sie niemals den Sekundärkreis unter Last.

Indirekte Messung mit 2 Stromwandlern und 2 oder 3 Spannungswandlern in einem Dreileiternetz

5.4 Hilfsenergie

Zum Abschalten der Hilfsenergie ist in der Nähe des Gerätes eine gekennzeichnete, leicht erreichbare Schaltvorrichtung mit Strombegrenzung vorzusehen. Die Absicherung sollte 10A oder weniger betragen und an die vorhandene Spannung und den Fehlerstrom angepasst sein.

Nach dem Einschalten der Spannungsversorgung sollte die Statusdiode für einen Moment rot und die nächste grün leuchten. Die Bestätigung der Aufzeichnung in Registern wird durch ein kurzes Erlöschen der Zustandsdiode signalisiert.

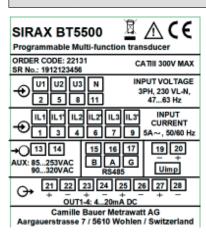
Die fehlerhafte Arbeit wird durch die Zustandsdiode wie in Kapitel 5.3 beschrieben signalisiert. Der Datenempfang über die RS-485-Schnittstelle wird durch ein Pulsieren der Rx-Diode und die Datenübertragung durch ein Pulsieren der Tx-Diode signalisiert. Das Einschalten der Relais 1 - 4 bewirkt das Aufleuchten der Diode AL1 - AL4.

5.5 Modbus-Schnittstelle RS485

Über die optionale Modbus-Schnittstelle können Messdaten für ein übergeordnetes System bereitgestellt werden. Bei Verwendung der USB-Schnittstelle muss die Konfiguration wie folgt lauten: Geräteadresse: 001; Baudrate: 57600; Parität: Keine; Stoppbit: 1

Die Signalleitungen (A, B) müssen verdrillt sein. G kann mit einem Draht oder durch die Leitungs-Abschirmung angeschlossen werden. In gestörter Umgebung müssen geschirmte Leitungen verwendet werden. Zur Vermeidung von möglichem Schleifenstrom sollte eine Erdverbindung an einem Punkt des Busses hergestellt werden. Speise-Widerstände (Rs) müssen im Interface des Bus-Masters (PC's) vorhanden sein. Beim Anschluss der Geräte sollten Stich-Leitungen vermieden werden. Der Bus sollte an beiden Ende mit einem Abschlusswiderstand (Rt) von 120 Ohm (1/4 Watt min.) versehen sein.

An den Bus lassen sich bis zu 32 beliebige Modbus-Geräte anschliessen. Bedingung für den Betrieb ist aber, dass alle an den Bus angeschlossenen Geräte die gleichen Kommunikations-Einstellungen (Baudrate, Übertragungsformat) und unterschiedliche Modbus-Adressen haben.


Das Bussystem wird halbduplex betrieben und lässt sich ohne Repeater bis zu einer Länge von 1,2 km ausdehnen.

6. Inbetriebnahme

Vor der Inbetriebnahme überprüfen, ob die Anschlussdaten des Gerätes mit den Daten der Anlage übereinstimmen (siehe Typenschild).

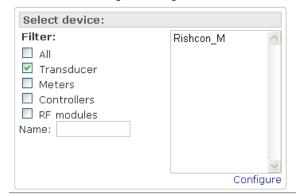
Danach kann das Gerät durch Einschalten der Hilfsenergie und der Messeingänge in Betrieb genommen werden.

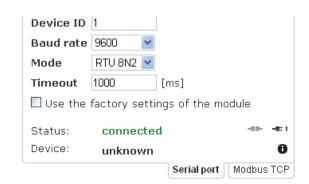
Etikettenversion mit 4 Analogausgängen 4 ... 20mA

7. Programmierung

Vor der Konfiguration des Messgerätes sollte der Treiber installiert werden. Das Messgerät macht gebrauch von der Software, welche im System ein Gerät des Universal Serial Bus - Multi-Transducer kreiert und verbindet es damit. Der Name des virtuellen COM-Port ist Multi-Transducer. Die Controller-Installation im Windows-System bewirkt, dass der Liste der vom Betriebssystem bedienten Ports ein aufeinanderfolgender serieller COM-Port hinzugefügt wird. Nach dem Anschließen des Schallkopfs an den USB-Anschluss informiert das Betriebssystem anhand der Meldung über das Erscheinungsbild eines neuen Geräts.

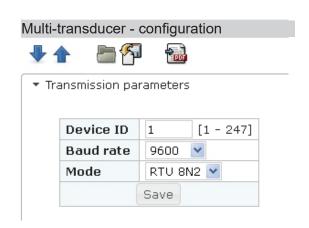
Der creator zur Suche neuer Universal Serial Bus Hardware startet automatisch. Man muss in Übereinstimmung mit den Vorschlägen des Creators handeln, die Installation aus dem angegebenen Ort auswählen und den Pfad zu den Controllern auf www.camillebauer.com angeben. Der Gerätekonfigurator ist mit folgenden Systemen kompatibel: Windows 10, 2000, XP, Server 2003, Vista, Server 2008, Windows 10 (x86 und X64). Bei der Installation können Informationen über das Fehlen der digitalen Signatur auftreten. Man muss diese Informationen ignorieren und die Installation fortsetzen. Nach dem Schließen des Creators erkennt das System sofort das aufeinanderfolgende Gerät - USB Serial Port. Der Ersteller zur Erkennung einer neuen Hardware startet erneut.




Nach erfolgreichem Abschluss der Installation informiert das System über die Installation eines neuen Geräts. Im Geräte-Manager werden zwei neue Geräte angezeigt: Multi-Transducer und Port COM mit dem Namen: Multi-Transducer.

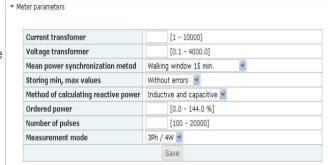
7.1 Konfiguration des Messumformers

Der SIRAX BT5500 kann per Software konfiguriert werden. Das Gerät muss über die RS485 Schnittstelle mit dem Computer verbunden werden, wenn die Kommunikation über die RS485 / Modbus-Schnittstelle oder direkt über den USB-Anschluss erfolgen soll. Nach Auswahl des Messumformers kann die Konfiguration vorgenommen werden.

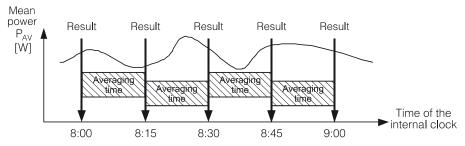


7.1.1 Einstellung der Übertragungsparameter

Nach Auswahl der Gruppenübertragungsparameter können folgende Elemente konfiguriert werden:


- Adresse Adresse für die Kommunikation mit dem Multi-Transducer über die RS-485-Schnittstelle im Bereich 1 ... 247. Normalerweise ist der Wert 1 vom Hersteller eingestellt.
- Baudrate Die Kommunikationsrate über die RS-485-Schnittstelle aus dem Bereich (4800, 9600, 19200, 38400 Bit / Sek.). Der Wert 9600 wird vom Hersteller eingestellt.
- Übertragungsmodus Der Übertragungsmodus über die RS485-Schnittstelle aus dem Bereich (RTU 8N2, RTU 8E1, RTU 801, RTU 8N1). Der Übertragungsmodus wird normalerweise vom Hersteller auf RTU 8N2 eingerichtet.

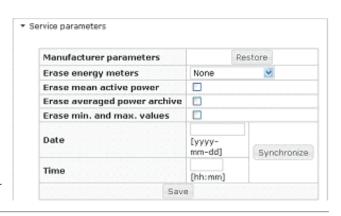
7.1.2 Einstellung der Messparameter


Nach Auswahl der Gruppe "Zählerparameter" können folgende Elemente konfiguriert werden:

- a) Stromwandlerverhältnis. Der Multiplikator wird verwendet, um den Strom auf der Primärseite des Transformators neu zu berechnen. Er wird vom Hersteller auf 1 eingestellt.
- Spannungswandlerverhältnis. Der Multiplikator wird verwendet, um die Spannung auf der Primärseite des Transformators neu zu berechnen.
 Er wird vom Hersteller auf 1 eingestellt.
- c) Weg, um die mittlere Leistung zu synchronisieren:
 - 15-Minuten-Zeitfenster Die mittlere Leistungs P_{AV} wird für die letzten 15 Minuten neu berechnet und alle 15 Sekunden aktualisiert, d. H. Zeitfenster

Die Messung wird alle 15, 30 oder 60 Minuten mit der c-Sperre synchronisiert - die mittlere Leistungs P_{AV} wird alle 15, 30 oder 60 Minuten synchronisiert mit der externen realen Uhr aktualisiert.

Es wird vom Hersteller am Lauffenster aufgestellt.

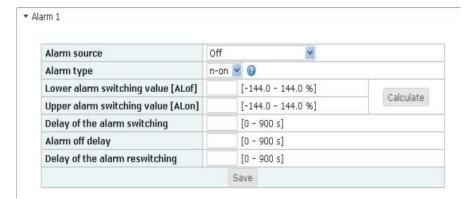

Messung der aktiven mittleren Leistung von 15 Minuten, synchronisiert mit der Uhr

- d) Geordnete Leistung. Bestellte Leistung in Prozent der Nennleistung (siehe Kapitel 10, Beispiel 2).
- e) Pulsverhältnis für den Pulsausgang (für aktive Energie).
- f) Speicherung min. und max. Werte. Auswahl der Speichermethode für min. und max. Werte: nur aus dem Messbereich oder auch aus dem Auftreten von Überlauffehlern.
- g) Berechnungsmethode für Blindleistung: induktiv und kapazitiv oder Plus und Minus.
- h) 3-Phasen-Messmodus: 3- und 4-Draht-Messung.

7.1.3 Löschen von Wattstundenzählern und Extremwerten

Nach Auswahl der Gruppe "Serviceparameter" können folgende Befehle ausgeführt werden:

- a) Löschen von Wattstundenzählern. Alle Wattstundenzähler aktiver und reaktiver Energie werden gelöscht.
- b) Löschen der aktiven mittleren Leistung.
- c) Löschen des Mittelungsleistungsarchivs.
- d) Löschen von min. und max. Werten. Der aktuell gemessene Wert wird auf den Minimal- und Maximalwert kopiert.
- e) Uhr: Es ist möglich, Uhrzeit und Datum einzustellen, um die Uhr mit der Uhrzeit auf dem PC (Computer) zu synchronisieren.

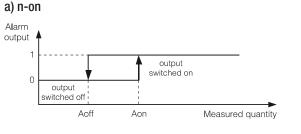

7.1.4 Einstellung der Alarmparameter

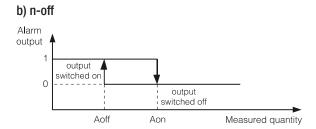
Nach Auswahl der Gruppe: Alarm 1-4 Konfiguration können folgende Alarmparameter konfiguriert werden:

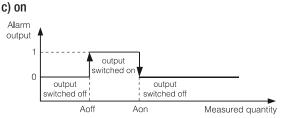
- a) Zuweisung des Alarmausgangsparameters Art des Signals, bei dem der Alarm gem. auf den tisch muss 1 reagieren,
- b) Art der Alarmausgabe Wählen Sie einen der 6 Modi n-ein, n-aus, ein, aus, h-ein und h-aus,
- c) unterer Wert der Alarmumschaltung Prozentwert der Zustandsänderung des gewählten Signals,
- d) oberer Wert der Alarmumschaltung Prozentwert der Zustandsänderung des gewählten Signals,
- e) Schaltverzögerung des Alarms. Verzögerungszeit in Sekunden beim Umschalten des Alarmzustands,
- f) Ausschaltverzögerung des Alarms. Verzögerungszeit in Sekunden beim Ausschalten des Alarmzustandes,
- g) deadlock der Alarmumschaltung. Zeit, nach der der Alarm wieder eingeschaltet werden kann.

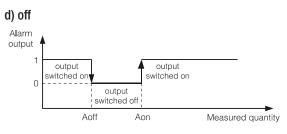
Wert in Registern 4015, 4023, 4031, 4039, 4047, 4055, 4063, 4072		Wert zur prozentualen Berechnung von Alarmen und Ausgangswerten
00	Fehlende Menge / Alarm oder Analogausgang ausgeschaltet	Mangel
01	Spannung der Phase L1	Un [V] *
02	Strom in der Leitung der Phase L1	In [A] *
03	Wirkleistung der Phase L1	Un x ln x cos(0°) [W] *
04	Blindleistung der Phase L1	Un x In x sin(90°) [var] *
05	Scheinleistung der Phase L1	Un x In [VA] *
06	Wirkleistungskoeffizient der Phase L1	1
07	Koeffizient tg φ der Phase L1	1
08	Spannung der Phase L2	Un [V] *
09	Strom in der Leitung der Phase L2	In [A] *
10	Wirkleistung der Phase L2	Un x In x cos(0°) [W] *
11	Blindleistung der Phase L2	Un x In x sin(90°) [var] *
12	Scheinleistung der Phase L2	Un x In [VA] *
13	Wirkleistungskoeffizient der Phase L2	1
14	Koeffizient tg φ der Phase L2	1
15	Spannung der Phase L3	Un [V] *
16	Strom in der Leitung der Phase L3	In [A] *
17	Wirkleistung der Phase L3	Un x ln x cos(0°) [W] *
18	Blindleistung der Phase L3	Un x In x sin(90°) [var] *
19	Scheinleistung der Phase L3	Un x In [VA] *
20	Wirkleistungskoeffizient der Phase L3	1
21	21 Koeffizient tg φ der Phase L3 1	
22	3-phasiger Mittelwert Spannung	Un [V] *
23	3-phasiger Mittelwert Strom	In [A] *
24	3-phasige Wirkleistung	3 x Un x In x cos(0°) [W] *
25	3-phasige Blindleistung	3 x Un x In x sin(90°) [var] *
26	3-phasige Blindleistung	3 x Un x In [VA] *
27	Leistungsfaktor der 3-phasigen Wirkleistung	1
28	3-phasiger Koeffizient tg φ	1
29	Frequenz	100 [Hz]
30	Phase-zu-Phase-Spannung L1-L2	√3 Un [V] *
31	Phase-zu-Phase-Spannung L2-L3	√3 Un [V] *
32	Phase-zu-Phase-Spannung L3-L1	√3 Un [V] *
33	Mittlere Spannung von Phase zu Phase	√3 Un [V] *
34	Mittelwert Wirkleistung	3 x Un x In x cos(0°) [W] *
35	Gebrauchte bestellte Wirkleistung (verbrauchte Energie)	100 [%]

^{*} Un, In - Nennwerte von Spannung- und Stromwandler

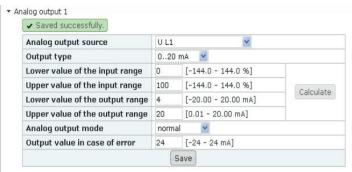



Die Einstellung der Eingangsgröße für Alarme und Analogausgänge ist in Tabelle 1 enthalten. Die Berechnungsweise ist in den Beispielen in Kapitel 10 dargestellt.


Vorsicht! Die Einstellung des Wertes Aoff Aon bewirkt das Ausschalten des Alarms.


Vorsicht! In der Version mit analogen Ausgängen steuern Alarme mit Nummern, die den analogen Ausgängen entsprechen, nur die Alarmdiode am Messumformer.

Beispielhafte Konfiguration der Alarme 1-4


Andere Alarmtypen: h-ein - immer eingeschaltet; h-aus - immer ausgeschaltet.

7.1.5 Einrichtung der Analogausgangsparameter

Nach Auswahl der Gruppe: Ausgang 1-4 können folgende Ausgangsparameter konfiguriert werden:

- a) Zuordnung des Parameters zum Analogausgang. Art des Signals, auf das der Ausgang reagieren muss gem. zum tisch 1,
- b) unterer Wert des Eingabebereichs. Prozentwert des gewählten Signals,
- c) oberer Wert des Eingabebereichs. Prozentwert des gewählten Signals,
- d) unterer Wert des Ausgabebereichs. Ausgangssignalwert in mA,
- e) oberer Wert des Ausgabebereichs. Ausgangssignalwert in mA,
- f) Arbeitsmodus des analogen Ausgangs. Folgende Modi stehen zur Verfügung: normaler Arbeitsunterwert, oberer Wert. Beide Alarme werden vom Hersteller im Normalmodus eingestellt.
- g) Wert am Ausgang bei falschem Eingangsparameterwert (1e20) in mA.

Beispiel einer Konfiguration des Analogausgangs

Zulässiger Überlauf am Analogausgang: 20% vom unteren und oberen Bereichswert.

Minimalwert am Analogausgang: $-20 \, 1,2 = -24 \, \text{mA}$. Maximalwert am Analogausgang: $20 \, 1,2 = 24 \, \text{mA}$.

7.1.6 Wiederherstellung der Herstellerparameter

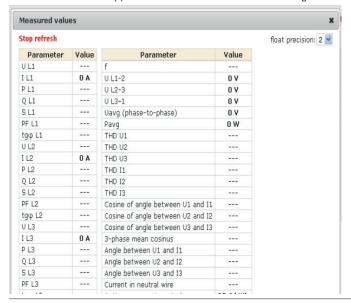

Nach Auswahl der Gruppe: Wiederherstellung der Herstellerparameter können folgende in Tabelle 2 eingestellte Herstellerparameter wiederhergestellt werden:

Tabelle 2

Parameter Beschreibung	Bereich / Wert	Herstellerwert
Verhältnis des Stromwandlers	110000	1
Übersetzungsverhältnis des Spannungswandlers	14000	1.0
Synchronisation der Wirkmittelleistung	5-Minuten-Fenster (Aufzeichnung im Archiv alle 15 Minuten); Messung alle 15, 30 oder 60 Minuten mit der Uhr synchronisiert	laufendes Fenster
Der Weg von min. und max. Wertspeicher	0.1	0 - ohne Fehler -1e20, 1e20
Der Weg zur passiven Energieberechnung	0.1	0 - induktive nnd kapazitive Energie
Bestellte Leistung	0144,0 %	100,0 %
Menge am Alarmausgang 1, 2, 3, 4	035 (gemäß Tabelle 1)	24
Ausgangstyp des Alarms 1, 2, 3, 4	n-on; n-off; on; off; h-on; h-off	n-on
Unterer Wert der Alarmumschaltung 1, 2, 3, 4	-144.0144.0 %	99.0 %
Oberer Wert der Alarmumschaltung 1, 2, 3, 4	-144.0144.0 %	101.0 %
Schaltverzögerung des Alarms 1, 2, 3, 4	0900 Sekunden	0
Ausschaltverzögerung des Alarms 1, 2, 3, 4	0900 Sekunden	0
Deadlock von Alarm 1,2,3,4 Umschaltung	0900 Sekunden	0
Menge auf der Dauerleistung 1, 2, 3, 4	035 (gemäß Tabelle 1)	24
Unterer Wert des Eingangsbereichs in % des Nennbereichs des Eingangs 1, 2, 3, 4	-144.0144.0 %	0.0%
Oberer Wert des Eingangsbereichs in % des Nennbereichs des Eingangs 1, 2, 3, 4	-144.0144.0 %	100.0%
Unterer Wert des Ausgabebereichs des Ausgangs 1, 2, 3, 4	-20.0020.00 mA	0.00 mA
Oberer Wert des Ausgangsbereichs des Ausgangs 1	0.0120.00 mA	20.00 mA
Manuelles Einschalten der Analogausgänge 1, 2, 3, 4:	Bei normaler Arbeit wird der untere und obere Wert des Ausgabebereichs eingestellt.	normale Arbeit
Pulsmenge für Pulsausgabe	5000 - 20000	5000
Adresse im MODBUS-Netzwerk	1 247	1
Übertragungsmodus	8n2, 8e1, 8o1, 8n1	8n2
Baudrate	4800, 9600, 19200, 38400	9600

7.1.7 Messwerte

Nach Auswahl der Gruppe: - werden alle vom Messumformer gemessenen Parameter in Form einer Liste angezeigt.

7.1.8 Minimal- und Maximalwerte

Nach Auswahl der Gruppe: - werden Minimal- und Maximalwerte, Minimal- und Maximalwerte einzelner vom Messumformer gemessener Parameter in Form einer Liste angezeigt.

7.1.9 Archiv des Leistungsprofils

Nach Auswahl der Gruppe: - Archiv des Leistungsprofils, es stehen folgende Informationen zur Verfügung. - Archivierter Datensatz: Aus welchem Muster und Anzahl der zu lesenden Datensätze.

Der Messumformer ist mit einem Archiv ausgestattet, in dem bis zu 1000 Messungen der gemittelten Wirkleistung gespeichert werden können. Die gemittelte Wirkleistung PAV kann mit Zeitintervallen von 15, 30, 60 Minuten (synchronisiert mit der internen Zeituhr) gemäß der Synchronisationsart in Register 4005 archiviert werden. Bei Arbeiten im Walking Window-Modus folgt die Arichivierung in vollen Vierteln von einer Stunde, obwohl der Schritt des Lauffensters 15 Sekunden dauert und die Funktion des Lauffensters jederzeit aktiviert werden kann. Der direkte Zugriff auf das Archiv erfolgt über 15 Datensätze mit Datum, Uhrzeit und Wert im Adressbereich von 1000 bis 1077. In Register 1000 wird die Position der ersten (ältesten) archivierten Probe und in Register 1001 die Position angegeben der letzten archivierten Probe (die letzte). In das Register 1002 wird der erste Datensatz der fünfzehn verfügbaren Datensätze in den Registern 1003 - 1077 gestellt. Nach dem Schreiben des ersten gelesenen Datensatzes (1 - 9000) werden die Daten von 15 Datensätzen zum Auslesen aktualisiert. Die Werte 1e20 befinden sich in Registern, in denen Samples noch nicht geschrieben wurden. Das Archiv ist in Form eines Ringpuffers organisiert. Nach dem Schreiben des neuntausendsten Wertes e überschreibt der nächste Wert den ältesten Wert e mit der Zahl 0 und nacheinander den nächsten mit der Zahl 1 usw. Wenn der Wert des Registers 1000 höher als 1001 ist, bedeutet dies, dass Der Puffer war mindestens einmal übergelaufen. Zum Beispiel bedeutet der Wert 15 im Register 1000 und 14 im Register 1001, dass es mehr als neuntausend Abtastwerte gab und die ältesten Abtastwerte vom Datensatz 15 bis 9000, vom Datensatz 1 bis zum neuesten Datensatz mit der Nummer 14. Durch Löschen der Durchschnittsleistung oder Ändern der Durchschnittszeit wird das Archiv nicht gelöscht. Das automatische Löschen des Archivs und der Durchschnittsleistung erfolgt nach Änderung des Strom- oder Spannungswandlerverhältnisses.

7.1.10 Fehlercodes

Nach dem Anschließen an das Netzwerk können Fehlermeldungen angezeigt werden. Fehlerursachen werden nachfolgend dargestellt:

- Die Statusdiode pulsiert rot es liegt keine Kalibrierung vor oder der nichtflüchtige Speicher ist beschädigt. Das Gerät muss an den Hersteller zurückgesandt werden.
- die Statusdiode leuchtet rot ungeeignete Arbeitsparameter; man muss den wandler neu konfigurieren.
- die Zustandsdiode pulsiert abwechselnd rot und grün Fehler der Phasenanschlussreihenfolge; man muss die Verbindung der Phase L2 mit der Phase L3 vertauschen.

8. Technische Spezifikationen

Eingang

AC Spannung

Nennwert (Un) 100 ... 400 VL-L (3-Phasen, 3-Draht)

57.5 ... 230 VL-N (3-Phasen, 4-Draht)

Messbereich 0 ... 0.05 ... 1.2 vom Nennwert (Un)

Genauigkeit Spannung L-L $\pm 0.5\%$ Genauigkeit Spannung L-N $\pm 0.2\%$ Bürde ≤ 0.05 VA

Zulässiger Spitzenfaktor 2

Maximale Überlast 1.2 x Un dauernd (480 V max.)

2 x Un für 5 s

AC Strom

Nennwert (In) 1 / 5 A

Messbereich 0 ... 0.002 ... 1.2 vom Nennwert (In)

Genauigkeit $\pm 0.2\%$ Bürde $\leq 0.1 \text{ VA}$

Zulässiger Spitzenfaktor 2

Maximale Überlast 1.2 x ln dauernd (6 A max.)

10 x ln für 5 s

Frequenz

Bereich $47 \dots 63 \text{ Hz}$ Genauigkeit $\pm 0.2\%$

Hilfsenergie

Nennspannungsbereich 85 ... 253 VAC (40 ... 400 Hz) oder 90 ... 320 VDC

20 ... 40 VAC (40 ... 400 Hz) oder 20 ... 60 VDC

Bürde ≤ 10 VA

Leistung

Bereich Wirkleistung -1.65 kW ... 1.4 W ... 1.65 kW

Genauigkeit $\pm 0.5\%$

Bereich Blindleistung -1.65 kvar ... 1.4 var ... 1.65 kvar

Genauigkeit $\pm 0.5\%$

Bereich Scheinleistung 1.4 VA ... 1.65 kVA

Genauigkeit $\pm 0.5\%$

Leistungsfaktor -1 ... 0 ... 1 (0 Lag ... 1 ... Lead 0)

(0 ... 0.1 ... 1.2 In und 0 ... 0.1 ... 1.2 Un)

sinusförmig (THD \leq 8%)

Genauigkeit $\pm 0.5\%$

Tangens φ -1.2 ... 0 ... 1.2

(0 ... 0.1 ... 1.2 ln und 0 ... 0.1 ... 1.2 Un)

sinusförmig (THD \leq 8%)

 $\begin{array}{lll} \mbox{Genauigkeit} & \pm 1\% \\ \mbox{Cosinus } \phi & -1 \dots 1 \\ \mbox{Genauigkeit} & \pm 1\% \end{array}$

Winkel zwischen U und I -180° ... 180° Genauigkeit $\pm 0.5\%$

Energie

Wirkenergie Import 0 ... 99999999.9 kWh

Genauigkeit $\pm 0.5\%$

Wirkenergie Export 0 ... 99999999.9 kvarh

Genauigkeit $\pm 0.5\%$

Blindenergie induktiv 0 ... 99999999.9 kWh

Genauigkeit $\pm 0.5\%$

Blindenergie kapazitiv 0 ... 99999999.9 kvarh

Genauigkeit $\pm 0.5\%$

Total harmonic distortion (THD) 0 ... 100% (im Bereich von 10 ... 120% U,I)

Genauigkeit ±5%

Zusätzliche Fehler in Prozent des Grundfehlers

von der Frequenz der Eingangssignale < 50%

von Umgebungstemperaturänderungen < 50% / 10°C

für THD > 8% < 100%

Ausgang

Analog Ausgang

Anzahl der analogen Ausgänge 0, 2 oder 4 programmierbare Ausgänge

Strombereich -20 ... 0 ... +20 mA

Maximaler Lastwiderstand $0 \dots 750 \Omega$ (bei zulässigem Überlauf von 20% am Analogausgang Rload = $0 \dots 600 \Omega$)

Genauigkeit 0.2% Reaktionszeit 3 s

Relais Ausgang

Anzahl der Relais 0, 2 oder 4 Relais, spannungslose Schließer

Ladekapazität 250 V~ / 0.5 A~

Puls Ausgang

Energieimpulsausgang Ausgang vom Typ OC, passiv gemäss EN 62053-31

Impulskonstante des OC-Ausgangs 5000 ... 20000 imp./kWh, unabhängig von Einstellverhältnissen Ku, Ki

Übersetzungsverhältnis des

Spannungswandlers Ku 0.1 ... 4000.0

Übersetzungsverhältnis des

Stromwandlers Ki 1 ... 10000

Kommunikationsschnittstelle

RS-485, Modbus/RTU

Physik Über Schraubklemme, RS-485, max. 1200m

Protokoll Modbus/RTU
Kennung 0xC4 (198)
Reaktionszeit 500 ms
Adresse 1 ... 247

Modus 8N2, 8E1, 801, 8N1

Baudrate 4800, 9600, 19200, 38400 kbits/s

Zahl der Teilnehmer < 32

Maximale Anzahl von Registern in einer

einzigen Abfrage erneut abgerufen 56 Register - jeweils 4 Bytes

105 Register - jeweils 2 Bytes

Implementierte Funktionen 03 Auslesen von Registern

16 Schreiben von Registern17 Geräteidentifikation

USB

Physik USB 1.1 / 2.0
Protokoll Modbus/RTU
Kennung 0xC6 (198)
Reaktionszeit 500 ms

Adresse 1

Modus 8N2

Baudrate 9600 kbit/s

Maximale Anzahl von Bytes

während des Auslesens / Schreibens 56 Register - jeweils 4 Bytes

105 Register - jeweils 2 Bytes

Implementierte Funktionen 03 Auslesen von Registern

16 Schreiben von Registern 17 Geräteidentifikation

Umweltbedingungen

Betriebstemperatur $-10 \dots +55$ °C Lagertemperatur $-30 \dots +70$ °C

Relative Luftfeuchte 25 ... 95% (inadmissible condensation)

Vorheizzeit 5 min.

Betriebshöhe < 2000 m

Sicherheit

EMV-Störfestigkeit gemäss IEC 61000-4-2
EMV-Emission gemäss IEC 61000-6-4

Schutzklasse II (Schutz isoliert gemäss EN 61010-1)

Verschmutzungsgrad 2 Installationskategorie CATIII

Maximale Phase-Erde-Spannung 300V (für Versorgungs- und Messkreis)

50V (für andere Stromkreisen)

Isolation zwischen den Stromkreisen Standard (DC)

50Hz,1min. (EN 61010-1)

3110 VDC, Alle Anschlüsse gegenüber Rumpffläche 3110 VDC, Eingang gegenüber allen anderen Stromkreise

3110 VDC, Hilfsversorgung gegen äußere Oberfläche und alle anderen Stromkreise

Gehäuseschutzklasse IP40, Gehäuse gemäss EN50529

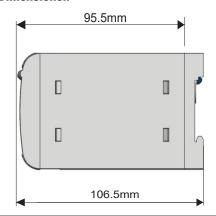
IP20, Klemmen gemäss EN50529

Mechanische Eigenschaften

Montage DIN-Hutschienenmontage / Wandmontage

Arbeitsposition Beliebig

Anschlüsse Konventionelle Schraubklemme


≤ 4,0 mm Einzeldraht oder 2 x 2,5 mm Feindraht

Brennbarkeitsklasse UL94 V-0, selbstverlöschend, nicht tropfend, halogenfrei

Dimensionen 122.5 x 66.0 x 106.5 mm (b x h x t)

Gewicht 0.45 kg

Dimensionen

9. Schnittstellendefinition Modbus (RS485)

Der programmierbare multifunktionale Messumformer SIRAX BT5500 unterstützt das MODBUS (RS485) RTU-Protokoll (2-Draht).

Die Verbindung sollte mit einem geschirmten Twisted-Pair-Kabel vorgenommen werden. Alle "A"- und "B"-Verbindungen sind verkettet. Die Displays sollten ebenfalls mit der "Gnd"-klemme verbunden sein. Zur Vermeidung von möglichem Schleifenstrom sollte eine Erdverbindung an einem Punkt des Netzwerks hergestellt werden. Die Schleifen- (Ring-)Topologie benötigt keinen Abschlusswiderstand. Die Leitungstopologie benötigt möglicherweise Abschlusswiderstände, je nach Art und Länge der benutzten Kabel. Die Impedanz des Abschlusswiderstands sollte der Impedanz des Kabels entsprechen und an beiden Enden der Leitung vorhanden sein. Das Kabel sollte an jedem Ende mit einem Widerstand von 120 Ohm (1/4 Watt min.) versehen sein.

Das RS 485 Netzwerk unterstützt eine maximale Länge von 1,2 km. Einschließlich des Masters können maximal 32 Messgeräte im RS485-Netzwerk angeschlossen werden. Der für den Zähler erlaubte Adressenbereich liegt zwischen 1 und 247 für 32 Messgeräte. Der Sendemodus (Adresse 0) ist nicht erlaubt. Die maximale Latenzzeit eines Zählers beträgt 500 ms, d.h. dies ist die Zeitspanne, die vergeht, bevor das erste Reaktionszeichen ausgegeben wird. Nachdem eine Abfrage durch die Software (des Masters) erfolgt ist, müssen 500 ms vergehen, bevor angenommen werden kann, dass der Zähler nicht reagieren wird. Wenn der Slave nicht innerhalb von 500 ms reagiert, kann der Master die vorausgegangene Abfrage ignorieren und eine neue Abfrage an den Slave richten.

In dem Messumformer befinden sich Daten in 16-Bit- und 32-Bit-Registern. Prozessvariablen und Messumformerparameter werden abhängig vom Typ des Variablenwerttyps im Registeradressraum abgelegt. Die Bits im 16-Bit-Register werden abhängig vom Typ des variablen Werts entsprechend nummeriert. Bits in 16-Bit-Registern werden von den jüngeren zu den älteren nummeriert (b0-b15). 32-Bit-Register enthalten nach dem IEEE-745-Standard Gleitkommazahlen. Registerbereiche werden in Tabelle 3 eingestellt. 16-Bit-Register werden in Tabelle 4 dargestellt. 32-Bit-Register werden in den Tabellen 5 und 6 eingestellt. Die Registeradressen in den Tabellen 3, 4, 5, 6 sind physikalische Adressen.

Tabelle 3

Adressbereich	Art des Wertes	Beschreibung
1000 - 1077	Integer (16 bits) Record	Archiv des Durchschnittsleistungsprofils. Tabelle 9 enthält eine Beschreibung der Register
4000 - 4105	Integer (16 bits)	Wert in einem 16-Bit-Register. Die Tabelle 3 enthält die Registerbeschreibung. Register zum Schreiben und Auslesen.
6000 - 6335	Float (2x16 bits)	Wert in zwei aufeinanderfolgenden 16-Bit-Registern. Register enthalten die gleichen Daten wie 32-Bit-Register aus dem Bereich 7500. Register zum Auslesen. Bytefolge (0-1-2-3)
7000 - 7335	Float (2x16 bits)	Wert in zwei aufeinanderfolgenden 16-Bit-Registern. Register enthalten die gleichen Daten wie 32-Bit-Register aus dem Bereich 7500. Bytefolge (3-2-1-0)
7500 - 7667	Float (32 bits)	Wert in einem 32-Bit-Register. Die Tabelle 4 enthält die Beschreibung der Register. Register zum Auslesen.

Adressbereich 16 bits	Operation	Beschreibung	
1000	R	Position der ältesten archivierten mittleren Leistung	
1001	R	Position der jüngsten archivierten mittleren Leistung	
1002	R/W	Erster verfügbarer Datensatz - NrBL (Bereich 1 9000)	
1003	R	Jahr der archivierten mittleren Leistung mit der Nummer NrBL + 0	
1004	R	Monat * 100 + archivierter Tag der mittleren Leistung mit der Nummer NrBL + 0	
1005	R	Stunde * 100 + archivierte Minute der mittleren Leistung mit der Nummer NrBL + 0	
1006	R	Archivierter Mittelwert der Leistung mit der Nummer NrBL + 0 des Float-Typs - 4 Bytes in der	
1007	R	Reihenfolge 3-2-1-0	
1008	R	Archiviertes Jahr der mittleren Leistung mit der Nummer NrBL + 1	
1009	R	Archivierter Monat, Tag der mittleren Leistung mit der Nummer NrBL + 1	
1010	R	Archivierte Stunde, Minute der mittleren Leistung mit der Nummer NrBL + 1	
1011	R	Archivierter Mittelwert der Leistung mit der Nummer NrBL + 0 des Float-Typs - 4 Bytes in der	
1012	R	Reihenfolge 3-2-1-0	
1073	R	Archiviertes Jahr der mittleren Leistung mit der Nummer NrBL + 14	
1074	R	Archivierter Monat, Tag der mittleren Leistung mit der Nummer NrBL + 14	
1075	R	Archivierte Stunde, Minute der mittleren Leistung mit der Nummer NrBL + 14	
1076	R	Archivierter Mittelwert der Leistung mit der Nummer NrBL + 0 des Float-Typs - 4 Bytes in der	
1077	R	Reihenfolge 3-2-1-0	

Register Aadresse	Operation	Bereich	Beschreibung	By default
4000	RW	0	Reserviert	0
4001	RW	0	Reserviert	0
4002	RW	0	Reserviert	0
4003	RW	1 10000	Stromwandlerverhältnis	1
4004	RW	1 40000	Spannungswandlerverhältnis x 10	10
4005	RW	0 3	Synchronisation der mittleren Wirkleistung: 0 –15 Minuten-Fenster (Aufzeichnung alle 15 Minuten mit der Uhr synchronisiert.) 1 – Messung alle 15 min mit der Uhr synchronisiert. 2 – Messung alle 30 min mit der Uhr synchronisiert. 3 – Messung alle 60 min mit der Uhr synchronisiert.	0
4006	RW	0	Reserviert	0
4007	RW	0.1	Die Art der Minimal- und Maximalwerterfassung: 0 - ohne Fehler, 1 - mit Fehlern	0
4008	RW	0.1	Reserviert	0
4009	RW	0 2359	Die Art der Blindleistungsberechnung: 0 - ohne Fehler, 1 - mit Fehlern	0
4010	RW	0 1440	Bestellte Leistung	1000
4011	RW	0 3	Löschen des Energiezählers: 0 - ohne Änderungen, 1 - aktive Energie löschen, 2 - passive Energie löschen, 3 - alle Energie löschen	0
4012	RW	0.1	Löschen der mittleren Wirkleistung P _{AV}	0
4013	RW	0.1	Löschen der archivierten mittleren Wirkleistung P _{AV}	0
4014	RW	0.1	Löschen von min. und max.	0
4015	RW	0.1 35	0.1 35 Alarmausgang 1 - Menge am Ausgang (Code nach Tabelle 6)	
4016	RW	0 5	Alarmausgang 1 - Typ: 0 - n-on, 1- n-off, 2 - on, 3 - oFF, 4 - h-on, 5 - h-oFF	0
4017	RW	-1440 0 1440 [‰]	Alarmausgang 1 - unterer Alarmschaltwert des Nenneingangsbereichs	990
4018	RW	-1440 0 1440 [‰]	Alarmausgang 1 - oberer Alarmschaltwert des Nenneingangsbereichs	1010
4019	RW	0 900 s	Alarmausgang 1 - Schaltverzögerung	0
4020	RW	0 900 s	Alarmausgang 1 - Ausschaltverzögerung des Alarms (für die bestellte Leistungsmenge) [register 4015 = 35] Dieser Parameter ist ausgeschlossen	0
4021	RW	0 900 s	Alarmausgang 1 - Deadlock des Umschaltens	0
4022	RW	0.1	Reserviert	0
4023	RW	0.1 35	Alarmausgang 2 - Menge am Ausgang (Code nach Tabelle 6)	24
4024	RW	0 5	Alarmausgang 2 - Typ: 0 - n-on, 1- n-off, 2 - on, 3 - oFF, 4 - h-on, 5 - h-oFF	3
4025	RW	-1440 0 1440 [‰]	Alarmausgang 2 - unterer Alarmschaltwert des Nenneingangsbereichs	990
4026	RW	-1440 0 1440 [‰]	Alarmausgang 2 - oberer Alarmschaltwert des Nenneingangsbereichs	1010
4027	RW	0 900 s	Alarmausgang 2 - Schaltverzögerung	0
4028	RW	0 900 s	Alarmausgang 2 - Ausschaltverzögerung des Alarms (für die bestellte Leistungsmenge) [register 4023 = 35] Dieser Parameter ist ausgeschlossen	0
4029	RW	0 900 s	Alarmausgang 2 - Deadlock des Umschaltens	0
4030	RW	0.1	Reserviert	0
4031	RW	0.1 35	Alarmausgang 3 - Menge am Ausgang (Code nach Tabelle 6)	24
4032	RW	0 5	Alarmausgang 3 - Typ: 0 - n-on, 1- n-off, 2 - on, 3 - oFF, 4 - h-on, 5 - h-oFF	0
4033	RW	-1440 0 1440 [‰]	Alarmausgang 3 - unterer Alarmschaltwert des Nenneingangsbereichs	990
4034	RW	-1440 0 1440 [‰]	Alarmausgang 3 - oberer Alarmschaltwert des Nenneingangsbereichs	1010
4035	RW	0 900 s	Alarmausgang 3 - Schaltverzögerung	0

4036	RW	0 900 s	Alarmausgang 3 - Ausschaltverzögerung des Alarms (für die bestellte Leistungsmenge) [register 4031 = 35] Dieser Parameter ist ausgeschlossen	0
4037	RW	0 900 s	Alarmausgang 3 - Deadlock des Umschaltens	0
4038	RW	0.1	Reserviert	0
4039	RW	0.1 35	Alarmausgang 4 - Menge am Ausgang (Code nach Tabelle 6)	24
4040	RW	0 5	Alarmausgang 4 - Typ: 0 - n-on, 1- n-off, 2 - on, 3 - oFF, 4 - h-on, 5 - h-oFF	0
4041	RW	-1440 0 1440 [‰]	Alarmausgang 4 - unterer Alarmschaltwert des Nenneingangsbereichs	990
4042	RW	-1440 0 1440 [‰]	Alarmausgang 4 - oberer Alarmschaltwert des Nenneingangsbereichs	1010
4043	RW	0 900 s	Alarmausgang 4 - Schaltverzögerung	0
4044	RW	0 900 s	Alarmausgang 4 - Ausschaltverzögerung des Alarms (für die bestellte Leistungsmenge) [register 4039 = 35] Dieser Parameter ist ausgeschlossen	0
4045	RW	0 900 s	Alarmausgang 4 - Deadlock des Umschaltens	0
4046	RW	0.1	Reserviert	0
4047	RW	0 15258	Kontinuierlicher Ausgang 1 - Menge am Ausgang (Code nach Tabelle 6)	24
4048	RW	0 65535	Kontinuierlicher Ausgang 1 - Typ: 0 - (020) mA; 1 - (420) mA; 2 - (-2020) mA	2
4049	RW	-1440 0 1440 [‰]	Kontinuierlicher Ausgang 1 - Unterer Wert des Eingangsbereichs in [‰] des Nenneingangsbereichs	0
4050	RW	-1440 0 1440 [‰]	Kontinuierlicher Ausgang 1 - Oberer Wert des Eingangsbereichs in [‰] des Nenneingangsbereichs	1000
4051	RW	-2400 0 2400 [10 μA]	Kontinuierlicher Ausgang 1 - Unterer Wert des aktuellen Ausgangsbereichs [10 µA]	0
4052	RW	1 2400 [10 μA]	Kontinuierlicher Ausgang 1 - Oberer Wert des aktuellen Ausgangsbereichs [10 µA]	2000
4053	RW	0 2	Kontinuierlicher Ausgang 1 - manuelles Einschalten: 0 - normale Arbeit, 1 - Wert eingestellt aus dem Register 4051, 2 - Wert eingestellt aus dem Register 4052	0
4054	RW	-24 24 [mA]	Kontinuierlicher Ausgang 1 - Wert auf dem Ausgang durch Fehler	24
4055	RW	0.1 35	Kontinuierlicher Ausgang 2 - Menge am Ausgang (Code nach Tabelle 6)	24
4056	RW	0 2	Kontinuierlicher Ausgang 2 - Typ: 0 - (020) mA; 1 - (420) mA; 2 - (-2020) mA	2
4057	RW	-1440 0 1440 [‰]	Kontinuierlicher Ausgang 2 - Unterer Wert des Eingangsbereichs in [‰] des Nenneingangsbereichs	0
4058	RW	-1440 0 1440 [‰]	Kontinuierlicher Ausgang 2 - Oberer Wert des Eingangsbereichs in [‰] des Nenneingangsbereichs	1000
4059	RW	-2400 0 2400 [10 μA]	Kontinuierlicher Ausgang 2 - Unterer Wert des aktuellen Ausgangsbereichs [10 μΑ]	0
4060	RW	1 2400 [10 μA]	Kontinuierlicher Ausgang 2 - Oberer Wert des aktuellen Ausgangsbereichs [10 μΑ]	2000
4061	RW	0 2	Kontinuierlicher Ausgang 2 - manuelles Einschalten: 0 - normale Arbeit, 1 - Wert eingestellt aus dem Register 4059, 2 - Wert eingestellt aus dem Register 4060	0
4062	RW	-24 24 [mA]	Kontinuierlicher Ausgang 2 - Wert auf dem Ausgang durch Fehler	24
4063	RW	0.1 35	Kontinuierlicher Ausgang 3 - Menge am Ausgang (Code nach Tabelle 6)	24
4064	RW	0 2	Kontinuierlicher Ausgang 3 - Typ: 0 - (020) mA; 1 - (420) mA; 2 - (-2020) mA	2
4065	RW	-1440 0 1440 [‰]	Kontinuierlicher Ausgang 3 - Unterer Wert des Eingangsbereichs in [‰] des Nenneingangsbereichs	0
4066	RW	-1440 0 1440 [‰]	Kontinuierlicher Ausgang 3 - Oberer Wert des Eingangsbereichs in [‰] des Nenneingangsbereichs	1000
4067	RW	-2400 0 2400 [10 μA]	Kontinuierlicher Ausgang 3 - Unterer Wert des aktuellen Ausgangsbereichs [10 μΑ]	0
4068	RW	1 2400 [10 μA]	Kontinuierlicher Ausgang 3 - Oberer Wert des aktuellen Ausgangsbereichs [10 μΑ]	2000

4069	RW	0 2	Kontinuierlicher Ausgang 3 - manuelles Einschalten: 0 - normale Arbeit, 1 - Wert eingestellt aus dem Register 4067, 2 - Wert eingestellt aus dem Register 4068	0
4070	RW	-24 24 [mA]	Kontinuierlicher Ausgang 3 - Wert auf dem Ausgang durch Fehler	24
4071	RW	0.1 35	Kontinuierlicher Ausgang 4 - Menge am Ausgang (Code nach Tabelle 6)	24
4072	RW	0 2	Kontinuierlicher Ausgang 4 - Typ: 0 - (020) mA; 1 - (420) mA; 2 - (-2020) mA	2
4073	RW	-1440 0 1440 [‰]	Kontinuierlicher Ausgang 4 - Unterer Wert des Eingangsbereichs in [‰] des Nenneingangsbereichs	0
4074	RW	-1440 0 1440 [‰]	Kontinuierlicher Ausgang 4 - Oberer Wert des Eingangsbereichs in [‰] des Nenneingangsbereichs	1000
4075	RW	-2400 0 2400 [10 μA]	Kontinuierlicher Ausgang 4 - Unterer Wert des aktuellen Ausgangsbereichs [10 μA]	0
4076	RW	1 2400 [10 μA]	Kontinuierlicher Ausgang 4 - Oberer Wert des aktuellen Ausgangsbereichs [10 μΑ]	2000
4077	RW	0 2	Kontinuierlicher Ausgang 4 - manuelles Einschalten: 0 - normale Arbeit, 1 - Wert eingestellt aus dem Register 4075, 2 - Wert eingestellt aus dem Register 4076	0
4078	RW	-24 24 [mA]	Kontinuierlicher Ausgang 4 - Wert auf dem Ausgang durch Fehler	24
4079	RW	5000 20000	Pulsmenge für Pulsausgabe	5000
4080	RW	1 247	Adresse im MODBUS-Netzwerk	1
4081	RW	0 3	Übertragungsmodus: 0 -> 8n2, 1 -> 8e1, 2 -> 8o1, 3 -> 8n1	0
4082	RW	0 3	Baudrate: 0 -> 4800, 1 -> 9600, 2 -> 19200, 3 -> 38400	1
4083	RW	0.1	Aktualisierung der Änderung der Übertragungsparameter	0
4084	RW	0 59	Sekunden	0
4085	RW	0 2359	Stunde * 100 + Minuten	0
4086	RW	101 1231	Monat * 100 + Minuten	1201
4087	RW	2009 2100	Jahr	2010
4088	RW	0.1	Aufzeichnung von Standardparametern (mit Nullpunkteinstellung von Energie, min, max und mittlerer Leistung)	0
4089	R	0 15258	Wirkenergie input, zwei höchstwertige Bytes	0
4090	R	0 65535	Wirkenergie input, zwei niedrigstwertige Bytes	0
4091	R	0 15258	Wirkenergie output, zwei höchstwertige Bytes	0
4092	R	0 65535	Wirkenergie output, zwei niedrigstwertige Bytes	0
4093	R	0 15258	Blindenergie induktiv, zwei höchstwertige Bytes	0
4094	R	0 65535	Blindenergie induktiv, zwei niedrigstwertige Bytes	0
4095	R	0 15258	Blindenergie kapazitiv, zwei höchstwertige Bytes	0
4096	R	0 65535	Blindenergie kapazitiv, zwei niedrigstwertige Bytes	0
4097	R	0	Reserviert	0
4098	R	0	Reserviert	0
4099	R	0	Reserviert	0
4100	R	0	Reserviert	0
4101	R	0 65535	Statusregister 1 - Beschreibung unten	-
4102	R	0 65535	Statusregister 2 - Beschreibung unten	-
4103	R	0 65535	Seriennummer, zwei ältere Bytes	_
4104	R	0 65535	Seriennummer, zwei jüngere Bytes	-
4105	R	0 65535	Programmversion (x 100)	100
4106	R	0 65535	Reserviert	_
4107	R	0 65535	Reserviert	
4108	RW	0.1	Messmodus: 0 - 3Ph4W, 1 - 3Ph3W	0

In Klammern $\ [\]$: Auflösung oder Einheit ist passend platziert.

Energien werden in Hunderten von Wattstunden (Var-Stunden) in zwei 16-Bit-Registern verfügbar gemacht, und aus diesem Grund muss man sie bei der Neuberechnung der Werte jeder Energie aus den Registern durch 10 dividieren, d.h.:

Wirkenergie input = (Wert des Registers 4089 * 65536 + Wert des Registers 4090) / 10 [kWh]

Wirkenergie output = (Wert des Registers 4091 * 65536 + Wert des Registers 4092) / 10 [kWh]

Blindenergie induktiv = (Wert des Registers 4093 * 65536 + Wert des Registers 4094) / 10 [kVarh]

Blindenergie kapazitiv = (Wert des Registers 4095 * 65536 + Wert des Registers 4096) / 10 [kVarh]

Status Register 1:

- Bit 15 "1" Beschädigung des nichtflüchtigen Speichers
- Bit 14 "1" Fehlen der Kalibrierung oder ungültige Kalibrierung
- Bit 13 "1" Fehler der Parameterwerte
- Bit 12 "1" Fehler der Energiewerte
- Bit 11 "1" Fehler der Phasenfolge
- Bit 10 Strombereich 0 1 A; 1 5 A
- Bit 9 reserviert
- Bit 8 Spannungsbereich: 0 57.8 V, 1 230 V
- Bit 7 "1" Das Intervall der Leistungsmittelung ist noch nicht abgelaufen
- Bit 6 "1" Schlechte Frequenz für THD-Messung
- Bit 5 1" Zu niedrige Spannung, um die Frequenz zu messen
- Bit 4 "1" Batterieverbrauch
- Bit 3 "1" Kapazitiver Charakter Q
- Bit 2 "1" Kapazitiver Charakter Q3
- Bit 1 "1" Kapazitiver Charakter Q2
- Bit 0 "1" Kapazitiver Charakter Q1

Status Register 2:

- Bit 15 "1" Vorhandensein vom kontinuierlichen Ausgang 4
- Bit 14 "1" Vorhandensein vom kontinuierlichen Ausgang 3
- Bit 13 "1" Vorhandensein vom kontinuierlichen Ausgang 2
- Bit 12 "1" Vorhandensein vom kontinuierlichen Ausgang 1
- Bit 11 "1" Vorhandensein von Alarmausgang 4
- Bit 10 "1" Vorhandensein von Alarmausgang 3
- Bit 9 "1" Vorhandensein von Alarmausgang 2
- Bit 8 "1" Vorhandensein von Alarmausgang 1
- Bit 7 reserviert
- Bit 6 reserviert
- Bit 5 reserviert
- Bit 4 reserviert
- Bit 3 "1" Alarmausgang 4 eingeschaltet
- Bit 2 1 Alarmausgang 3 eingeschaltet
- Bit 1 1 Alarmausgang 2 eingeschaltet
- Bit 0 1 Alarmausgang 1 eingeschaltet

Adresse vom 16 bit Register	Adresse vom 32 bit Register	Operation	Beschreibung	Einheit	3Ph4W	3Ph3W
7000/6000	7500	R	Spannung der Phase L1	V	√	Х
7002/6002	7501	R	Strom der Phase L1	А	√	√
7004/6004	7502	R	Wirkleistung der Phase L1	W	√	Χ
7006/6006	7503	R	Blindleistung der Phase L1	Var	$\sqrt{}$	Χ
7008/6008	7504	R	Scheinleistung der Phase L1	VA	√	Х
7010/6010	7505	R	Wirkleistungsfaktor der Phase L1	-		Χ
7012/6012	7506	R	Verhältnis von Blindleistung zu Wirkleistung der Phase L1	-	$\sqrt{}$	Χ
7014/6014	7507	R	Spannung der Phase L2	V	√	Х
7016/6016	7508	R	Strom der Phase L2	А	√	√
7018/6018	7509	R	Wirkleistung der Phase L2	W	1	Χ
7020/6020	7510	R	Blindleistung der Phase L2	Var	√	Х

7022/6022	7511	R	Scheinleistung der Phase L2	VA	√	Х
7024/6024	7512	R	Wirkleistungsfaktor der Phase L2	-	1	Х
7026/6026	7513	R	Verhältnis von Blindleistung zu Wirkleistung der Phase L2	-	√	Х
7028/6028	7514	R	Spannung der Phase L3	V	1	Х
7030/6030	7515	R	Strom der Phase L3	А	1	J
7032/6032	7516	R	Wirkleistung der Phase L3	W	1	Х
7034/6034	7517	R	Blindleistung der Phase L3	Var	1	Х
7036/6036	7518	R	Scheinleistung der Phase L3	VA	1	Х
7038/6038	7519	R	Wirkleistungsfaktor der Phase L3	-	J	Х
7040/6040	7520	R	Verhältnis von Blindleistung zu Wirkleistung der Phase L3	-	√	Х
7042/6042	7521	R	Mittelwert Spannung 3-Phasen	V	V	Х
7044/6044	7522	R	Mittelwert Strom 3-Phasen	А	√	J
7046/6046	7523	R	Wirkleistung 3-Phasen	W	1	1
7048/6048	7524	R	Blindleistung 3-Phasen	Var	1	1
7050/6050	7525	R	Scheinleistung 3-Phasen	VA	1	1
7052/6052	7526	R	Mittelwert Wirkleistungsfaktor	-	1	<i>√</i>
7054/6054	7527	R	Verhältnis Mittelwert von Blindleistung zu Wirkleistung	-	1	1
7056/6056	7528	R	Frequenz	Hz	1	1
7058/6058	7529	R	Phase-Phase-Spannung L1-L2	V	1	1
7060/6060	7530	R	Phase-Phase-Spannung L2-L3	V	1	1
7062/6062	7531	R	Phase-Phase-Spannung L3-L1	V	1	1
7064/6064	7532	R	Mittelwert Spannung von Phase zu Phase	V	1	1
7066/6066	7533	R	15, 30, 60 Minuten dreiphasig. Wirkleistung (P1 + P2 + P3)	W	1	1
7068/6068	7534	R	THD U1	%	1	X
7070/6070	7535	R	THD U2	%	1	Х
7072/6072	7536	R	THD U3	%	1	Х
7074/6074	7537	R	THD I1	%	1	Х
7076/6076	7538	R	THD I2	%	1	Х
7078/6078	7539	R	THD I3	%	1	Х
7080/6080	7540	R	Cosinuswinkel zwischen U1 und I1	-	1	Х
7082/6082	7541	R	Cosinuswinkel zwischen U2 und I2	-	1	Х
7084/6084	7542	R	Cosinuswinkel zwischen U3 und I3	-	1	Х
7086/6086	7543	R	Mittelwert 3-Phasen-Cosinus	-	1	1
7088/6088	7544	R	Winkel zwischen U1 und I1	0	\ \	X
7090/6090	7545	R	Winkel zwischen U2 und I2	0	1	Х
7092/6092	7546	R	Winkel zwischen U3 und I3	0	1	Х
7094/6094	7547	R	Strom in Neutralleitung (aus Vektoren ausgewertet)	Α	1	Х
7096/6096	7548	R	3-phasige Wirkenergie input (Anzahl der Überfüllungen des Registers 7549, Nullstellung nach Überschreitung von 99999999,9 kWh)	100 MWh	√ √	√
7098/6098	7549	R	3-phasiger Wirkenergie input (Wattstundenzähler bis 99999,9 kWh)	kWh	√	V
7100/6100	7550	R	3-phasige Wirkenergie output (Anzahl der Überfüllungen des Registers 7551, Nullstellung nach Überschreitung von 99999999,9 kWh)	100 MWh	1	√
7102/6102	7551	R	3-phasiger Wirkenergie output (Wattstundenzähler bis 99999,9 kWh)	kWh	√	V
7104/6104	7552	R	3-phasige induktive Blindenergie (Anzahl der Register 7553-Überfüllungen, bei Überschreitung von 9999999,9 kVarh auf Null gesetzt)	100 MVarh	√ √	√ √
7106/6106	7553	R	3-phasige induktive Blindenergie (Wattstundenzähler bis 99999,9 kWh)	kVarh	1	1
7108/6108	7554	R	3-phasige Wirkenergie output (Anzahl der Überfüllungen des Registers 7555, Nullstellung nach Überschreitung von 99999999.9 kVarh)	100 MVarh	√ √	1
7110/6110	7555	R	3-phasige kapazitive Blindleistung (Wattstundenzähler bis 99999,9 kWh)	kVarh	√	
7112/6112	7556	R	Reserviert		V	√

7114/6114	7557	R	Reserviert		√	
7116/6116	7558	R	Reserviert		$\sqrt{}$	
7118/6118	7559	R	Reserviert		√	
7120/6120	7560	R	Zeit - Sekunden	sec	√	
7122/6122	7561	R	Zeit - Stunden, Minuten	-	√	
7124/6124	7562	R	Datum - Monat, Tag	-	√	
7126/6126	7563	R	Datum - Jahr	-	√	
7128/6128	7564	R	Hochfahren Analogausgang 1	mA	√	
7130/6130	7565	R	Hochfahren Analogausgang 2	mA	√	
7132/6132	7566	R	Hochfahren Analogausgang 3	mA	√	$\sqrt{}$
7134/6134	7567	R	Hochfahren Analogausgang 4	mA	√	
7136/6136	7568	R	Energieverbrauch in Prozent im Power Guard-Modus	%	√	
7138/6138	7569	R	Reserviert	-	√	
7140/6140	7570	R	Status 1	-	√	
7142/6142	7571	R	Status 2	-	√	
7144/6144	7572	R	Spannung L1 min	V		Х
7146/6146	7573	R	Spannung L1 max	V	√	Х
7148/6148	7574	R	Spannung L2 min	V	J	Х
7150/6150	7575	R	Spannung L2 max	V	J	Х
7152/6152	7576	R	Spannung L3 min	V	$\sqrt{}$	Х
7154/6154	7577	R	Spannung L3 max	V		Х
7156/6156	7578	R	Strom L1 min	А	J	
7158/6158	7579	R	Strom L1 max	А	J	
7160/6160	7580	R	Strom L2 min	А	J	
7162/6162	7581	R	Strom L2 max	А		
7164/6164	7582	R	Strom L3 min	А		
7166/6166	7583	R	Strom L3 max	А		
7168/6168	7584	R	Wirkleistung L1 min	W		X
7170/6170	7585	R	Wirkleistung L1 max	W	J	Х
7172/6172	7586	R	Wirkleistung L2 min	W	J	Х
7174/6174	7587	R	Wirkleistung L2 max	W	V	Х
7176/6176	7588	R	Wirkleistung L3 min	W	J	Х
7178/6178	7589	R	Wirkleistung L3 max	W	V	Х
7180/6180	7590	R	Blindleistung L1 min	Var	V	X
7182/6182	7591	R	Blindleistung L1 max	Var	√	X
7184/6184	7592	R	Blindleistung L2 min	Var	√	Х
7186/6186	7593	R	Blindleistung L2 max	Var	√	Х
7188/6188	7594	R	Blindleistung L3 min	Var	√	X
7190/6190	7595	R	Blindleistung L3 max	Var	√	Х
7192/6192	7596	R	Scheinleistung L1 min	VA	V	X
7194/6194	7597	R	Scheinleistung L1 max	VA	√	X
7196/6196	7598	R	Scheinleistung L2 min	VA	√	Х
7198/6198	7599	R	Scheinleistung L2 max	VA	√	X
7200/6200	7600	R	Scheinleistung L3 min	VA	√	X
7202/6202	7601	R	Scheinleistung L3 max	VA	√	Х
7204/6204	7602	R	Leistungsfaktor (PF) L1 min	-	√	Х
7206/6206	7603	R	Leistungsfaktor (PF) L1 max	-	√	Х
7208/6208	7604	R	Leistungsfaktor (PF) L2 min	-	V	X
7210/6210	7605	R	Leistungsfaktor (PF) L2 max	-	√	Х

7212/6212	7606	R	Leistungsfaktor (PF) L3 min	_	1	Х
7214/6214	7607	R	Leistungsfaktor (PF) L3 max	_	√ √	X
7214/0214	7608	R	Blind- und Wirkleistungsverhältnis L1 min.	_	√ √	X
7218/6218	7609	R	Blind- und Wirkleistungsverhältnis L1 max.	_	√ √	X
7220/6220	7610	R	Blind- und Wirkleistungsverhältnis L2 min.	_	√ √	X
7222/6222	7611	R	Blind- und Wirkleistungsverhältnis L2 max.	_	√ √	X
7224/6224	7612	R	Blind- und Wirkleistungsverhältnis L3 min.	_	√ √	X
7226/6226	7613	R	Blind- und Wirkleistungsverhältnis L3 max.	-	√ √	X
7228/6228	7614	R	Phase zu Phase Spannung L _{1,2} min.	V	√ √	
7230/6230	7615	R	Phase zu Phase Spannung L ₁₋₂ max.	V	√ √	$\sqrt{}$
7232/6232	7616	R	Phase zu Phase Spannung L _{2.3} min.	V	√ √	$\sqrt{}$
7234/6234	7617	R	Phase zu Phase Spannung L _{2.3} max.	V		$\sqrt{}$
7236/6236	7618	R	Phase zu Phase Spannung L _{2.1} min.	V	√ √	$\sqrt{}$
7238/6238	7619	R	Phase zu Phase Spannung L ₃₋₁ max.	V		$\sqrt{}$
7240/6240	7620	R	3-phasiger Spannungmittelwert min.	V		$\sqrt{}$
7242/6242	7621	R	3-phasiger Spannungmittelwert max.	V	√ √	$\sqrt{}$
7244/6244	7622	R	3-phasiger Strommittelwert min.	А		1
7246/6246	7623	R	3-phasiger Strommittelwert max.	А	√ √	1
7248/6248	7624	R	3-phasige Wirkleistung min.	W	√ √	1
7250/6250	7625	R	3-phasige Wirkleistung max.	W	√ √	$\sqrt{}$
7252/6252	7626	R	3-phasige Blindleistung min.	Var	√ √	1
7254/6254	7627	R	3-phasige Blindleistung max.	Var	√ √	$\sqrt{}$
7256/6256	7628	R	3-phasige Scheinleistung min.	VA	√ √	$\sqrt{}$
7258/6258	7629	R	3-phasige Scheinleistung max.	VA	√ √	$\sqrt{}$
7260/6260	7630	R	Leistungsfaktor (PF) min	-	√ √	1
7262/6262	7631	R	Leistungsfaktor (PF) max	_	√ √	√
7264/6264	7632	R	Min. 3-phasiges mittleres Blind- und Wirkleistungsverhältnis	-	√ √	√
7266/6266	7633	R	Max. 3-phasiges mittleres Blind- und Wirkleistungsverhältnis	-	√ √	1
7268/6268	7634	R	Frequenz min	Hz	√ √	1
7270/6270	7635	R	Frequenz max	Hz	√ √	$\sqrt{}$
7272/6272	7636	R	Phase zu Phase Mittelwert Spannung min.	V	1	1
7274/6274	7637	R	Phase zu Phase Mittelwert Spannung max.	V	1	1
7276/6276	7638	R	15,30,60 Minuten 3-phasige Wirkleistung min.	W	√ √	1
7278/6278	7639	R	15,30,60 Minuten 3-phasige Wirkleistung max.	W	√ √	1
7280/6280	7640	R	THD U1 min	%		X
7282/6282	7641	R	THD U1 max	%	1	Х
7284/6284	7642	R	THD U2 min	%	√	Х
7286/6286	7643	R	THD U2 max	%	√ √	Х
7288/6288	7644	R	THD U3 min	%	√ √	Χ
7290/6290	7645	R	THD U3 max	%	1	Х
7292/6292	7646	R	THD I1 min	%	√ √	Х
7294/6294	7647	R	THD I1 max	%		Х
7296/6296	7648	R	THD I2 min	%	1	Χ
7298/6298	7649	R	THD I2 max	%	√ √	Х
7300/6300	7650	R	THD I3 min	%	\ √	Х
7302/6302	7651	R	THD I3 max	%	1	Х
7304/6304	7652	R	Cosinuswinkel zwischen U1 und I1 min	-		Х
7306/6306	7653	R	Cosinuswinkel zwischen U1 und I1 max	-	1	Х
7308/6308	7654	R	Cosinuswinkel zwischen U2 und I2 min	-	1	Х

7310/6310	7655	R	Cosinuswinkel zwischen U2 und I2 max	-	√	Х
7312/6312	7656	R	Cosinuswinkel zwischen U3 und I3 min	-	√	Х
7314/6314	7657	R	Cosinuswinkel zwischen U3 und I3 max	-	√	X
7316/6316	7658	R	Mittelwert min. Cosinus 3-Phasen	-	√	X
7318/6318	7659	R	Mittelwert max. Cosinus 3-Phasen	-	√	X
7320/6320	7660	R	Winkel zwischen U1 und I1 min	0		X
7322/6322	7661	R	Winkel zwischen U1 und I1 max	0		X
7324/6324	7662	R	Winkel zwischen U2 und I2 min	0		X
7326/6326	7663	R	Winkel zwischen U2 und I2 max	0		Х
7328/6328	7664	R	Winkel zwischen U3 und I3 min	0		Х
7330/6330	7665	R	Winkel zwischen U3 und I3 max	0		X
7332/6332	7666	R	Neutralleiterstrom min	А		X
7334/6334	7667	R	Neutralleiterstrom max	А		X

Bei einem unteren Überlauf wird der Wert –1e20 geschrieben, bei einem oberen Überlauf oder bei einem Fehler wird der Wert 1e20 geschrieben.

10. Beispiele für die Geräteprogrammierung

10.1 Beispiel 1 - Programmierung eines Alarms 1 mit Hysterese

Programmieren Sie den Betrieb des Alarms 1 so, dass bei dem Wert 250 V der Spannung der Phase 1 der Alarm eingeschaltet, jedoch bei 210 V ausgeschaltet wird.

Für die Bemessungsausführung Un = 230 V müssen Werte aus Tabelle 7 eingestellt werden:

Tabelle 7

Register	Wert	Bedeutung
4015	1	1 - Spannung von Phase 1 (U1)
4016	0	0 - n-Ein-Modus
4017	913	913 - 91,3% (Prozentwert mit einer Nachkommastelle multipliziert mit 10) der Nennspannung der Phase 1 - Alarm ausgeschaltet, (210 V / 230 V) x 1000 = 913
4018	1087	1087 - 108,7% (Prozentwert mit einer Nachkommastelle multipliziert mit 10) der Nennspannung der Phase 1 - Alarm eingeschaltet, (250 V / 230 V) x 1000 = 1087
4019	0	0 - 0 Sekunden Verzögerung bei der Alarmumschaltung
4020	0	0 - 0 Sekunden Verzögerung beim Ausschalten des Alarms
4021	0	0 - 0 Sekunden Deadlock für die Alarmumschaltung

10.2 Beispiel 2 - Konfiguration des Alarms bei Überschreitung der bestellten Leistung

Stellen Sie den Alarm für eine frühzeitige Warnung der Überschreitung der bestellten Leistung auf 90% bei 15 Minuten (900 Sek.). Stromwandler 2500: 5 A, Spannung U n = 230 V. Temporäre maximale Leistungsaufnahme 1,5 MW.

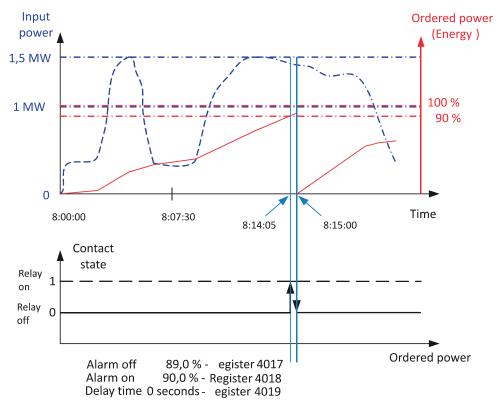
Berechnung:

3-phasige Nennwirkleistung des Wandlers:

 $P = 3 \times 230 \text{ V} \times 2500 \text{ A} (500 \times 5 \text{ A}) = 1,725 \text{ MW} (500 \times 3450 \text{ W}), d. H. 100\%$

Bestellte Leistung und Nennleistungsverhältnis = 1 MW / 1,725 57,97% des Nennwerts des Tarnsducers (Register 4010).

Hysterese der Alarmarbeit:


Alarmschaltung für 90% der bestellten Leistung (Register 4018), Abschaltung zum Beispiel: um 1% niedriger - 89% (Register 4017)

Arbeitsoptimierung der Leistungsbegrenzungsfunktion (Alarm Einschaltverzögerung):

Verzögerungszeit des Alarms o = t 10% * [1 MW * 900 s / 1,5 MW] = 60 s (Register 4019).

In der folgenden Abbildung wird dargestellt, wie der Parameter verwendet wird, um den Alarm zu aktivieren. Die Alarmverzögerung ist ausgeschaltet (auf 0 Sek. Eingestellt) - Register 4019.

Im Beispiel für die verbleibenden 10% der bestellten Leistung bei maximalem Stromverbrauch könnten die Geräte noch 60 Sekunden arbeiten, ohne den Verbraucher mit Strafen zu belasten. Wenn die Verzögerung auf 60 Sekunden eingestellt wäre, würde der Alarm nicht aktiviert (Register 4019).

Messung der verbrauchten bestellten Leistung, Mittelungszeit von 15 Minuten, Synchronisation mit der Uhr, Alarm auf 90% eingestellt.

Tabelle 8

Register	Wert	Bedeutung
4010	579	579 - 57,9% (Prozentwert mit einer Nachkommastelle multipliziert mit 10) Prozentwert der bestellten Leistung bezogen auf die Nennleistung
4015	35	35 - Alarm auf den Prozentsatz der verbrauchten Wirkleistung eingestellt
4016	0	0 - n-Ein-Modus
4017	890	890 - 89,0% (Prozentwert mit einer Nachkommastelle multipliziert mit 10) Alarm ausschalten; Damit der Alarm funktioniert, sollte der Wert im Register 4017 niedriger sein als im Register 4018 (Hysterese), zum Beispiel: um 1%
4018	900	900 - 90,0% mA (Prozentwert mit einer Nachkommastelle multipliziert mit 10) Prozentsatz des bestellten Einschaltalarms
4019	0 or 60	0 - 0 Sekunden Alarm Einschaltverzögerung (ohne Optimierung), 60 Sekunden mit Optimierung
4020	0	0 - 0 Sekunden der Ausschaltverzögerung des Alarms
4021	0	0 - 0 Sekunden Blockade für erneutes Schalten des Alarms

10.3 Beispiel 3 - Programmieren eines unidirektionalen Dauerausgangs 1

Konfigurieren Sie den Dauerausgang 1 so, dass er den Wert 20 mA hat, wenn der dreiphasige Durchschnittsstrom 4 A beträgt, und dass er den Wert 4 mA hat, wenn der Strom 0 A beträgt. Für den Bemessungsstrom I n = 5 A müssen Werte gemäß Tabelle 9 eingestellt werden:

Tabelle 9

Register	Wert	Bedeutung
4048	23	23 - mittlerer 3-Phasen-Strom (I)
4049	0	0 - 0,0% (Prozentwert mit einer Nachkommastelle multipliziert mit 10) der niedrigere Wert des mittleren 3-Phasen-Nennstroms (0 A / 5 A) x $1000 = 0$
4050	800	800 - 80,0% (Prozentwert mit einer Nachkommastelle multipliziert mit 10) der obere Wert des mittleren 3-Phasen-Nennstroms (4 A / 5 A) x $1000 = 800$
4051	400	400 - 4,00 mAX (Wert in mA mit zwei Nachkommastellen multipliziert mit 100) niedrigerer Wert des Ausgangsstroms
4052	2000	2000 - 20,00 mA (Wert in mA mit zwei Nachkommastellen multipliziert mit 100) oberer Wert des Ausgangsstroms. (20,00 mA × 100) = 2000
4053	0	0 - Normalbetrieb des Dauerausgangs 1
4054	24	24 - 24 mA am Dauerausgang 1, wenn der Fehler (-1e20 oder 1e20)

10.4 Beispiel 4 - Programmieren eines bidirektionalen Dauerausgangs 1

Konfigurieren Sie den Dauerausgang 1 so, dass er den Wert -20 mA hat, wenn der dreiphasige Leistungswert 3 x 4 A x 230 V x cos (180 °) = -2760 W ist, und dass er im dreiphasigen Zustand den Wert 20 mA hat Leistungswert ist 3 x 4 A x 230 V x cos (0 °) = 2760 W.

Für die Bemessungsausführung 3 x 5 A / 230 V müssen Werte gemäß Tabelle 10 eingestellt werden:

Register	Wert	Bedeutung
4048	24	24 - mittlerer 3-Phasen-Strom (I)
4049	-800	-1000100,0% (Prozentwert mit einer Nachkommastelle multipliziert mit 10) der niedrigere Wert des mittleren 3-Phasen-Nennstroms, 3 x 4 A x 230 V x cos (180 °) / 3 x 5 A x 230 V) x 1000 = -800
4050	800	1000 - 100,0% (Prozentwert mit einer Nachkommastelle multipliziert mit 10) der obere Wert des mittleren 3-Phasen-Nennstroms, 3 x 4 A x 230 V x cos (0 °) / 3 x 5 A x 230 V) x 1000 = 800
4051	-2000	4-200020,00 mA (Wert in mA mit zwei Nachkommastellen multipliziert mit 100) Unterer Wert des Ausgangsstroms (-20,00 mA x 100) = -2000
4052	2000	2000 - 20,00 mA (Wert in mA mit zwei Nachkommastellen multipliziert mit 100) oberer Wert des Ausgangsstroms (20,00 mA x 100) = 2000
4053	0	0 - Normalbetrieb des Dauerausgangs 1
4054	24	24 - 24 mA am Dauerausgang 1, wenn der Fehler (-1e20 oder 1e20)